GCNet: A Deep Learning Framework for Enhanced Grape Cluster Segmentation and Yield Estimation Incorporating Occluded Grape Detection with a Correction Factor for Indoor Experimentation.

IF 2.7 Q3 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY
Rubi Quiñones, Syeda Mariah Banu, Eren Gultepe
{"title":"GCNet: A Deep Learning Framework for Enhanced Grape Cluster Segmentation and Yield Estimation Incorporating Occluded Grape Detection with a Correction Factor for Indoor Experimentation.","authors":"Rubi Quiñones, Syeda Mariah Banu, Eren Gultepe","doi":"10.3390/jimaging11020034","DOIUrl":null,"url":null,"abstract":"<p><p>Object segmentation algorithms have heavily relied on deep learning techniques to estimate the count of grapes which is a strong indicator for the yield success of grapes. The issue with using object segmentation algorithms for grape analytics is that they are limited to counting only the visible grapes, thus omitting hidden grapes, which affect the true estimate of grape yield. Many grapes are occluded because of either the compactness of the grape bunch cluster or due to canopy interference. This introduces the need for models to be able to estimate the unseen berries to give a more accurate estimate of the grape yield by improving grape cluster segmentation. We propose the Grape Counting Network (GCNet), a novel framework for grape cluster segmentation, integrating deep learning techniques with correction factors to address challenges in indoor yield estimation. GCNet incorporates occlusion adjustments, enhancing segmentation accuracy even under conditions of foliage and cluster compactness, and setting new standards in agricultural indoor imaging analysis. This approach improves yield estimation accuracy, achieving a R² of 0.96 and reducing mean absolute error (MAE) by 10% compared to previous methods. We also propose a new dataset called GrapeSet which contains visible imagery of grape clusters imaged indoors, along with their ground truth mask, total grape count, and weight in grams. The proposed framework aims to encourage future research in determining which features of grapes can be leveraged to estimate the correct grape yield count, equip grape harvesters with the knowledge of early yield estimation, and produce accurate results in object segmentation algorithms for grape analytics.</p>","PeriodicalId":37035,"journal":{"name":"Journal of Imaging","volume":"11 2","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11856392/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jimaging11020034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Object segmentation algorithms have heavily relied on deep learning techniques to estimate the count of grapes which is a strong indicator for the yield success of grapes. The issue with using object segmentation algorithms for grape analytics is that they are limited to counting only the visible grapes, thus omitting hidden grapes, which affect the true estimate of grape yield. Many grapes are occluded because of either the compactness of the grape bunch cluster or due to canopy interference. This introduces the need for models to be able to estimate the unseen berries to give a more accurate estimate of the grape yield by improving grape cluster segmentation. We propose the Grape Counting Network (GCNet), a novel framework for grape cluster segmentation, integrating deep learning techniques with correction factors to address challenges in indoor yield estimation. GCNet incorporates occlusion adjustments, enhancing segmentation accuracy even under conditions of foliage and cluster compactness, and setting new standards in agricultural indoor imaging analysis. This approach improves yield estimation accuracy, achieving a R² of 0.96 and reducing mean absolute error (MAE) by 10% compared to previous methods. We also propose a new dataset called GrapeSet which contains visible imagery of grape clusters imaged indoors, along with their ground truth mask, total grape count, and weight in grams. The proposed framework aims to encourage future research in determining which features of grapes can be leveraged to estimate the correct grape yield count, equip grape harvesters with the knowledge of early yield estimation, and produce accurate results in object segmentation algorithms for grape analytics.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Imaging
Journal of Imaging Medicine-Radiology, Nuclear Medicine and Imaging
CiteScore
5.90
自引率
6.20%
发文量
303
审稿时长
7 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信