Enhancing U-Net Segmentation Accuracy Through Comprehensive Data Preprocessing.

IF 2.7 Q3 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY
Talshyn Sarsembayeva, Madina Mansurova, Assel Abdildayeva, Stepan Serebryakov
{"title":"Enhancing U-Net Segmentation Accuracy Through Comprehensive Data Preprocessing.","authors":"Talshyn Sarsembayeva, Madina Mansurova, Assel Abdildayeva, Stepan Serebryakov","doi":"10.3390/jimaging11020050","DOIUrl":null,"url":null,"abstract":"<p><p>The accurate segmentation of lung regions in computed tomography (CT) scans is critical for the automated analysis of lung diseases such as chronic obstructive pulmonary disease (COPD) and COVID-19. This paper focuses on enhancing the accuracy of U-Net segmentation models through a robust preprocessing pipeline. The pipeline includes CT image normalization, binarization to extract lung regions, and morphological operations to remove artifacts. Additionally, the proposed method applies region-of-interest (ROI) filtering to isolate lung areas effectively. The dataset preprocessing significantly improves segmentation quality by providing clean and consistent input data for the U-Net model. Experimental results demonstrate that the Intersection over Union (IoU) and Dice coefficient exceeded 0.95 on training datasets. This work highlights the importance of preprocessing as a standalone step for optimizing deep learning-based medical image analysis.</p>","PeriodicalId":37035,"journal":{"name":"Journal of Imaging","volume":"11 2","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11856095/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jimaging11020050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The accurate segmentation of lung regions in computed tomography (CT) scans is critical for the automated analysis of lung diseases such as chronic obstructive pulmonary disease (COPD) and COVID-19. This paper focuses on enhancing the accuracy of U-Net segmentation models through a robust preprocessing pipeline. The pipeline includes CT image normalization, binarization to extract lung regions, and morphological operations to remove artifacts. Additionally, the proposed method applies region-of-interest (ROI) filtering to isolate lung areas effectively. The dataset preprocessing significantly improves segmentation quality by providing clean and consistent input data for the U-Net model. Experimental results demonstrate that the Intersection over Union (IoU) and Dice coefficient exceeded 0.95 on training datasets. This work highlights the importance of preprocessing as a standalone step for optimizing deep learning-based medical image analysis.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Imaging
Journal of Imaging Medicine-Radiology, Nuclear Medicine and Imaging
CiteScore
5.90
自引率
6.20%
发文量
303
审稿时长
7 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信