Applications of Artificial Intelligence, Deep Learning, and Machine Learning to Support the Analysis of Microscopic Images of Cells and Tissues.

IF 2.7 Q3 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY
Muhammad Ali, Viviana Benfante, Ghazal Basirinia, Pierpaolo Alongi, Alessandro Sperandeo, Alberto Quattrocchi, Antonino Giulio Giannone, Daniela Cabibi, Anthony Yezzi, Domenico Di Raimondo, Antonino Tuttolomondo, Albert Comelli
{"title":"Applications of Artificial Intelligence, Deep Learning, and Machine Learning to Support the Analysis of Microscopic Images of Cells and Tissues.","authors":"Muhammad Ali, Viviana Benfante, Ghazal Basirinia, Pierpaolo Alongi, Alessandro Sperandeo, Alberto Quattrocchi, Antonino Giulio Giannone, Daniela Cabibi, Anthony Yezzi, Domenico Di Raimondo, Antonino Tuttolomondo, Albert Comelli","doi":"10.3390/jimaging11020059","DOIUrl":null,"url":null,"abstract":"<p><p>Artificial intelligence (AI) transforms image data analysis across many biomedical fields, such as cell biology, radiology, pathology, cancer biology, and immunology, with object detection, image feature extraction, classification, and segmentation applications. Advancements in deep learning (DL) research have been a critical factor in advancing computer techniques for biomedical image analysis and data mining. A significant improvement in the accuracy of cell detection and segmentation algorithms has been achieved as a result of the emergence of open-source software and innovative deep neural network architectures. Automated cell segmentation now enables the extraction of quantifiable cellular and spatial features from microscope images of cells and tissues, providing critical insights into cellular organization in various diseases. This review aims to examine the latest AI and DL techniques for cell analysis and data mining in microscopy images, aid the biologists who have less background knowledge in AI and machine learning (ML), and incorporate the ML models into microscopy focus images.</p>","PeriodicalId":37035,"journal":{"name":"Journal of Imaging","volume":"11 2","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11856378/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jimaging11020059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Artificial intelligence (AI) transforms image data analysis across many biomedical fields, such as cell biology, radiology, pathology, cancer biology, and immunology, with object detection, image feature extraction, classification, and segmentation applications. Advancements in deep learning (DL) research have been a critical factor in advancing computer techniques for biomedical image analysis and data mining. A significant improvement in the accuracy of cell detection and segmentation algorithms has been achieved as a result of the emergence of open-source software and innovative deep neural network architectures. Automated cell segmentation now enables the extraction of quantifiable cellular and spatial features from microscope images of cells and tissues, providing critical insights into cellular organization in various diseases. This review aims to examine the latest AI and DL techniques for cell analysis and data mining in microscopy images, aid the biologists who have less background knowledge in AI and machine learning (ML), and incorporate the ML models into microscopy focus images.

人工智能、深度学习和机器学习在支持细胞和组织显微图像分析中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Imaging
Journal of Imaging Medicine-Radiology, Nuclear Medicine and Imaging
CiteScore
5.90
自引率
6.20%
发文量
303
审稿时长
7 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信