Adapting Classification Neural Network Architectures for Medical Image Segmentation Using Explainable AI.

IF 2.7 Q3 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY
Arturs Nikulins, Edgars Edelmers, Kaspars Sudars, Inese Polaka
{"title":"Adapting Classification Neural Network Architectures for Medical Image Segmentation Using Explainable AI.","authors":"Arturs Nikulins, Edgars Edelmers, Kaspars Sudars, Inese Polaka","doi":"10.3390/jimaging11020055","DOIUrl":null,"url":null,"abstract":"<p><p>Segmentation neural networks are widely used in medical imaging to identify anomalies that may impact patient health. Despite their effectiveness, these networks face significant challenges, including the need for extensive annotated patient data, time-consuming manual segmentation processes and restricted data access due to privacy concerns. In contrast, classification neural networks, similar to segmentation neural networks, capture essential parameters for identifying objects during training. This paper leverages this characteristic, combined with explainable artificial intelligence (XAI) techniques, to address the challenges of segmentation. By adapting classification neural networks for segmentation tasks, the proposed approach reduces dependency on manual segmentation. To demonstrate this concept, the Medical Segmentation Decathlon 'Brain Tumours' dataset was utilised. A ResNet classification neural network was trained, and XAI tools were applied to generate segmentation-like outputs. Our findings reveal that GuidedBackprop is among the most efficient and effective methods, producing heatmaps that closely resemble segmentation masks by accurately highlighting the entirety of the target object.</p>","PeriodicalId":37035,"journal":{"name":"Journal of Imaging","volume":"11 2","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11856553/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jimaging11020055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Segmentation neural networks are widely used in medical imaging to identify anomalies that may impact patient health. Despite their effectiveness, these networks face significant challenges, including the need for extensive annotated patient data, time-consuming manual segmentation processes and restricted data access due to privacy concerns. In contrast, classification neural networks, similar to segmentation neural networks, capture essential parameters for identifying objects during training. This paper leverages this characteristic, combined with explainable artificial intelligence (XAI) techniques, to address the challenges of segmentation. By adapting classification neural networks for segmentation tasks, the proposed approach reduces dependency on manual segmentation. To demonstrate this concept, the Medical Segmentation Decathlon 'Brain Tumours' dataset was utilised. A ResNet classification neural network was trained, and XAI tools were applied to generate segmentation-like outputs. Our findings reveal that GuidedBackprop is among the most efficient and effective methods, producing heatmaps that closely resemble segmentation masks by accurately highlighting the entirety of the target object.

利用可解释的人工智能,为医学图像分割调整分类神经网络架构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Imaging
Journal of Imaging Medicine-Radiology, Nuclear Medicine and Imaging
CiteScore
5.90
自引率
6.20%
发文量
303
审稿时长
7 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信