Guided synthesis of annotated lung CT images with pathologies using a multi-conditioned denoising diffusion probabilistic model (mDDPM).

IF 3.3 3区 医学 Q2 ENGINEERING, BIOMEDICAL
Arjun Krishna, Ge Wang, Klaus Mueller
{"title":"Guided synthesis of annotated lung CT images with pathologies using a multi-conditioned denoising diffusion probabilistic model (mDDPM).","authors":"Arjun Krishna, Ge Wang, Klaus Mueller","doi":"10.1088/1361-6560/adb9b3","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective</i>. The training of AI models for medical image diagnostics requires highly accurate, diverse, and large training datasets with annotations and pathologies. Unfortunately, due to privacy and other constraints the amount of medical image data available for AI training remains limited, and this scarcity is exacerbated by the high overhead required for annotation. We address this challenge by introducing a new controlled framework for the generation of synthetic images complete with annotations, incorporating multiple conditional specifications as inputs.<i>Approach</i>. Using lung CT as a case study, we employ a denoising diffusion probabilistic model to train an unconditional large-scale generative model. We extend this with a classifier-free sampling strategy to develop a robust generation framework. This approach enables the generation of constrained and annotated lung CT images that accurately depict anatomy, successfully deceiving experts into perceiving them as real. Most notably, we demonstrate the generalizability of our multi-conditioned sampling approach by producing images with specific pathologies, such as lung nodules at designated locations, within the constrained anatomy.<i>Main results</i>. Our experiments reveal that our proposed approach can effectively produce constrained, annotated and diverse lung CT images that maintain anatomical consistency and fidelity, even for annotations not present in the training datasets. Moreover, our results highlight the superior performance of controlled generative frameworks of this nature compared to nearly every state-of-the-art image generative model when trained on comparable large medical datasets. Finally, we highlight how our approach can be extended to other medical imaging domains, further underscoring the versatility of our method.<i>Significance</i>. The significance of our work lies in its robust approach for generating synthetic images with annotations, facilitating the creation of highly accurate and diverse training datasets for AI applications and its wider applicability to other imaging modalities in medical domains. Our demonstrated capability to faithfully represent anatomy and pathology in generated medical images holds significant potential for various medical imaging applications, with high promise to lead to improved diagnostic accuracy and patient care.</p>","PeriodicalId":20185,"journal":{"name":"Physics in medicine and biology","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics in medicine and biology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6560/adb9b3","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Objective. The training of AI models for medical image diagnostics requires highly accurate, diverse, and large training datasets with annotations and pathologies. Unfortunately, due to privacy and other constraints the amount of medical image data available for AI training remains limited, and this scarcity is exacerbated by the high overhead required for annotation. We address this challenge by introducing a new controlled framework for the generation of synthetic images complete with annotations, incorporating multiple conditional specifications as inputs.Approach. Using lung CT as a case study, we employ a denoising diffusion probabilistic model to train an unconditional large-scale generative model. We extend this with a classifier-free sampling strategy to develop a robust generation framework. This approach enables the generation of constrained and annotated lung CT images that accurately depict anatomy, successfully deceiving experts into perceiving them as real. Most notably, we demonstrate the generalizability of our multi-conditioned sampling approach by producing images with specific pathologies, such as lung nodules at designated locations, within the constrained anatomy.Main results. Our experiments reveal that our proposed approach can effectively produce constrained, annotated and diverse lung CT images that maintain anatomical consistency and fidelity, even for annotations not present in the training datasets. Moreover, our results highlight the superior performance of controlled generative frameworks of this nature compared to nearly every state-of-the-art image generative model when trained on comparable large medical datasets. Finally, we highlight how our approach can be extended to other medical imaging domains, further underscoring the versatility of our method.Significance. The significance of our work lies in its robust approach for generating synthetic images with annotations, facilitating the creation of highly accurate and diverse training datasets for AI applications and its wider applicability to other imaging modalities in medical domains. Our demonstrated capability to faithfully represent anatomy and pathology in generated medical images holds significant potential for various medical imaging applications, with high promise to lead to improved diagnostic accuracy and patient care.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Physics in medicine and biology
Physics in medicine and biology 医学-工程:生物医学
CiteScore
6.50
自引率
14.30%
发文量
409
审稿时长
2 months
期刊介绍: The development and application of theoretical, computational and experimental physics to medicine, physiology and biology. Topics covered are: therapy physics (including ionizing and non-ionizing radiation); biomedical imaging (e.g. x-ray, magnetic resonance, ultrasound, optical and nuclear imaging); image-guided interventions; image reconstruction and analysis (including kinetic modelling); artificial intelligence in biomedical physics and analysis; nanoparticles in imaging and therapy; radiobiology; radiation protection and patient dose monitoring; radiation dosimetry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信