Assi Valve, Vappu Reijonen, Anna Rintala, Satu Strengell, Katri Nousiainen, Mikko Tenhunen
{"title":"Dose measurement of ophthalmic Ru-106/Rh-106 applicators with a diamond detector calibrated in a clinical megavoltage electron beam.","authors":"Assi Valve, Vappu Reijonen, Anna Rintala, Satu Strengell, Katri Nousiainen, Mikko Tenhunen","doi":"10.1088/1361-6560/adb9b1","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Uveal melanomas and retinoblastomas can be treated with ophthalmic beta-emitting ruthenium-106/rhodium-106 applicators. The applicator manufacturer provides a datasheet of the dosimetric properties of each applicator set, but the source strengths and 3D dose distributions should be verified by the end user with independent measurements.</p><p><strong>Approach: </strong>The purpose of this work was to calibrate diamond detector against low energy electron beam and determine necessary correction factors in the geometry of ophthalmic applicators to be able to perform quality assurance (QA) measurements for the applicators. Two separate sets of applicators were evaluated.</p><p><strong>Main results: </strong>The results showed good agreement with manufacturers' specifications. An average agreement of 3 % to the manufacturer's reference data was observed: measured dose rate / reference = 0.97 +/- 0.04 (mean +/- SD), range 0.90 - 1.05.</p><p><strong>Significance: </strong>It can be concluded that megavoltage electron beam is suitable for calibration of a diamond detector. After calibration, detector can be used for an absolute dose measurement of a ruthenium-106/rhodium-106 applicator with sufficient performance to detect deviations larger than 10 % in the QA before clinical use.</p>","PeriodicalId":20185,"journal":{"name":"Physics in medicine and biology","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics in medicine and biology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6560/adb9b1","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: Uveal melanomas and retinoblastomas can be treated with ophthalmic beta-emitting ruthenium-106/rhodium-106 applicators. The applicator manufacturer provides a datasheet of the dosimetric properties of each applicator set, but the source strengths and 3D dose distributions should be verified by the end user with independent measurements.
Approach: The purpose of this work was to calibrate diamond detector against low energy electron beam and determine necessary correction factors in the geometry of ophthalmic applicators to be able to perform quality assurance (QA) measurements for the applicators. Two separate sets of applicators were evaluated.
Main results: The results showed good agreement with manufacturers' specifications. An average agreement of 3 % to the manufacturer's reference data was observed: measured dose rate / reference = 0.97 +/- 0.04 (mean +/- SD), range 0.90 - 1.05.
Significance: It can be concluded that megavoltage electron beam is suitable for calibration of a diamond detector. After calibration, detector can be used for an absolute dose measurement of a ruthenium-106/rhodium-106 applicator with sufficient performance to detect deviations larger than 10 % in the QA before clinical use.
期刊介绍:
The development and application of theoretical, computational and experimental physics to medicine, physiology and biology. Topics covered are: therapy physics (including ionizing and non-ionizing radiation); biomedical imaging (e.g. x-ray, magnetic resonance, ultrasound, optical and nuclear imaging); image-guided interventions; image reconstruction and analysis (including kinetic modelling); artificial intelligence in biomedical physics and analysis; nanoparticles in imaging and therapy; radiobiology; radiation protection and patient dose monitoring; radiation dosimetry