Hyperpiliation, not loss of pilus retraction, reduces Pseudomonas aeruginosa pathogenicity.

IF 3.7 2区 生物学 Q2 MICROBIOLOGY
Sara L N Kilmury, Katherine J Graham, Ryan P Lamers, Lesley T MacNeil, Lori L Burrows
{"title":"Hyperpiliation, not loss of pilus retraction, reduces <i>Pseudomonas aeruginosa</i> pathogenicity.","authors":"Sara L N Kilmury, Katherine J Graham, Ryan P Lamers, Lesley T MacNeil, Lori L Burrows","doi":"10.1128/spectrum.02558-24","DOIUrl":null,"url":null,"abstract":"<p><p>Type IVa pili (T4aP) are important virulence factors for many bacterial pathogens. Previous studies suggested that the retraction ATPase, PilT, modulates pathogenicity due to its critical role in pilus dynamics and twitching motility. Here we use a <i>Caenorhabditis elegans</i> slow-killing model to show that hyperpiliation, not loss of pilus retraction, reduces virulence of <i>Pseudomonas aeruginosa</i> strains PAK and PA14. Hyperactivating point mutations in the <i>P. aeruginosa</i> PilSR two-component system that controls transcription of the major pilin gene, <i>pilA</i>, increased levels of surface pili to the same extent as deleting <i>pilT</i>, without impairing twitching motility. These functionally hyperpiliated PilSR mutants had significant defects in pathogenicity that were rescued by deleting <i>pilA</i> or through disruption of hyperpiliation via deletion of the type III secretion system needle-length regulator, PscP. Hyperpiliated <i>pilT</i> deletion or <i>pilO</i> point mutants showed similar PilA-dependent impairments in virulence, validating the phenotype. Together, our data support a model where a surfeit of pili reduces virulence, potentially through the prevention of effective engagement of contact-dependent virulence factors. These findings suggest that the role of T4aP retraction in virulence should be revised.IMPORTANCE<i>Pseudomonas aeruginosa</i> is a major contributor to hospital-acquired infections and particularly problematic due to its intrinsic resistance to many front-line antibiotics. Strategies to combat this and other important pathogens include the development of anti-virulence therapeutics. We show that the pathogenicity of <i>P. aeruginosa</i> is impaired when the amount of T4aP expressed on the cell surface increases, independent of the bacteria's ability to twitch. We propose that having excess T4aP on the cell surface may physically interfere with productive engagement of the contact-dependent type III secretion toxin delivery system. A better understanding of how T4aP modulate interaction of bacteria with target cells will improve the design of therapeutics targeting components involved in the regulation of T4aP expression and function to reduce the clinical burden of <i>P. aeruginosa</i> and other T4aP-expressing bacteria.</p>","PeriodicalId":18670,"journal":{"name":"Microbiology spectrum","volume":" ","pages":"e0255824"},"PeriodicalIF":3.7000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiology spectrum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/spectrum.02558-24","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Type IVa pili (T4aP) are important virulence factors for many bacterial pathogens. Previous studies suggested that the retraction ATPase, PilT, modulates pathogenicity due to its critical role in pilus dynamics and twitching motility. Here we use a Caenorhabditis elegans slow-killing model to show that hyperpiliation, not loss of pilus retraction, reduces virulence of Pseudomonas aeruginosa strains PAK and PA14. Hyperactivating point mutations in the P. aeruginosa PilSR two-component system that controls transcription of the major pilin gene, pilA, increased levels of surface pili to the same extent as deleting pilT, without impairing twitching motility. These functionally hyperpiliated PilSR mutants had significant defects in pathogenicity that were rescued by deleting pilA or through disruption of hyperpiliation via deletion of the type III secretion system needle-length regulator, PscP. Hyperpiliated pilT deletion or pilO point mutants showed similar PilA-dependent impairments in virulence, validating the phenotype. Together, our data support a model where a surfeit of pili reduces virulence, potentially through the prevention of effective engagement of contact-dependent virulence factors. These findings suggest that the role of T4aP retraction in virulence should be revised.IMPORTANCEPseudomonas aeruginosa is a major contributor to hospital-acquired infections and particularly problematic due to its intrinsic resistance to many front-line antibiotics. Strategies to combat this and other important pathogens include the development of anti-virulence therapeutics. We show that the pathogenicity of P. aeruginosa is impaired when the amount of T4aP expressed on the cell surface increases, independent of the bacteria's ability to twitch. We propose that having excess T4aP on the cell surface may physically interfere with productive engagement of the contact-dependent type III secretion toxin delivery system. A better understanding of how T4aP modulate interaction of bacteria with target cells will improve the design of therapeutics targeting components involved in the regulation of T4aP expression and function to reduce the clinical burden of P. aeruginosa and other T4aP-expressing bacteria.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Microbiology spectrum
Microbiology spectrum Biochemistry, Genetics and Molecular Biology-Genetics
CiteScore
3.20
自引率
5.40%
发文量
1800
期刊介绍: Microbiology Spectrum publishes commissioned review articles on topics in microbiology representing ten content areas: Archaea; Food Microbiology; Bacterial Genetics, Cell Biology, and Physiology; Clinical Microbiology; Environmental Microbiology and Ecology; Eukaryotic Microbes; Genomics, Computational, and Synthetic Microbiology; Immunology; Pathogenesis; and Virology. Reviews are interrelated, with each review linking to other related content. A large board of Microbiology Spectrum editors aids in the development of topics for potential reviews and in the identification of an editor, or editors, who shepherd each collection.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信