Cancer cell xenografts in zebrafish embryos as an experimental tool in drug screening for adrenocortical carcinoma.

IF 2.5 Q3 ENDOCRINOLOGY & METABOLISM
Mariangela Tamburello, Andrea Abate, Sandra Sigala
{"title":"Cancer cell xenografts in zebrafish embryos as an experimental tool in drug screening for adrenocortical carcinoma.","authors":"Mariangela Tamburello, Andrea Abate, Sandra Sigala","doi":"10.23736/S2724-6507.24.04270-2","DOIUrl":null,"url":null,"abstract":"<p><p>Despite the widespread use of murine models in in-vivo experiments, the zebrafish (Danio rerio) offers unique advantages that make it a versatile and faster preclinical model for drug screening, particularly for adrenocortical carcinoma (ACC), a rare malignancy with limited preclinical models that reflect patient heterogeneities. Over the past decade, significant progress has been made with models like cell lines, organoids, and murine models, which are crucial for advancing disease understanding and treatment development. However, recent reviews have overlooked zebrafish model for ACC. This mini review aims to fill this gap by detailing the advancements of the zebrafish model in ACC research. Recent studies have utilized zebrafish embryos xenografted with ACC cells as a novel approach to studying drug effects on tumor growth and metastasis, consistent with studies regarding other tumors. Specifically, it was demonstrated the ability of abiraterone acetate, trabectedin and progesterone to significantly reduce the tumor area at non-toxic-concentrations. Interestingly, this model allowed to confirm in vivo that metastasis-derived cells were able to metastasize and that trabectedin and progesterone reduced the rate of embryos with metastasis. One more study showed that metastasis formation was significantly reduced in H295R/TR-SF-1-xenografted embryos after fascin1 knock-out or inhibition with G2-044. Even with some limitations, the zebrafish xenografts offer a suitable and expeditious animal model for the screening of potentially effective drugs, identification of dose toxicity, and determination of the most promising compounds for more advanced preclinical phases, especially in rare diseases with limited therapeutic options such as ACC.</p>","PeriodicalId":18690,"journal":{"name":"Minerva endocrinology","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Minerva endocrinology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23736/S2724-6507.24.04270-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Despite the widespread use of murine models in in-vivo experiments, the zebrafish (Danio rerio) offers unique advantages that make it a versatile and faster preclinical model for drug screening, particularly for adrenocortical carcinoma (ACC), a rare malignancy with limited preclinical models that reflect patient heterogeneities. Over the past decade, significant progress has been made with models like cell lines, organoids, and murine models, which are crucial for advancing disease understanding and treatment development. However, recent reviews have overlooked zebrafish model for ACC. This mini review aims to fill this gap by detailing the advancements of the zebrafish model in ACC research. Recent studies have utilized zebrafish embryos xenografted with ACC cells as a novel approach to studying drug effects on tumor growth and metastasis, consistent with studies regarding other tumors. Specifically, it was demonstrated the ability of abiraterone acetate, trabectedin and progesterone to significantly reduce the tumor area at non-toxic-concentrations. Interestingly, this model allowed to confirm in vivo that metastasis-derived cells were able to metastasize and that trabectedin and progesterone reduced the rate of embryos with metastasis. One more study showed that metastasis formation was significantly reduced in H295R/TR-SF-1-xenografted embryos after fascin1 knock-out or inhibition with G2-044. Even with some limitations, the zebrafish xenografts offer a suitable and expeditious animal model for the screening of potentially effective drugs, identification of dose toxicity, and determination of the most promising compounds for more advanced preclinical phases, especially in rare diseases with limited therapeutic options such as ACC.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.60
自引率
0.00%
发文量
146
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信