Glycoproteins gM and gN are indispensable factors for rhesus macaque rhadinovirus replication and spread but can be reconstituted by KSHV chimeras.

IF 4 2区 医学 Q2 VIROLOGY
Journal of Virology Pub Date : 2025-03-18 Epub Date: 2025-02-25 DOI:10.1128/jvi.01922-24
Gavin Golas, Byung S Park, Scott W Wong
{"title":"Glycoproteins gM and gN are indispensable factors for rhesus macaque rhadinovirus replication and spread but can be reconstituted by KSHV chimeras.","authors":"Gavin Golas, Byung S Park, Scott W Wong","doi":"10.1128/jvi.01922-24","DOIUrl":null,"url":null,"abstract":"<p><p>Rhesus macaque rhadinovirus (RRV) is a primate gamma-2 herpesvirus (rhadinovirus) closely related to Kaposi sarcoma-associated herpesvirus (KSHV), the human oncovirus that causes Kaposi sarcoma. Like other herpesviruses, KSHV and RRV encode numerous envelope glycoproteins involved in cell attachment, entry, as well as assembly and release of progeny virions from infected cells. Two glycoproteins postulated to form a complex and reported to be virus-neutralizing targets are glycoproteins M (gM) and N (gN). To investigate gM and gN in rhadinovirus infection, we utilized infectious and pathogenic bacterial artificial chromosomes (BAC). RRV BACmids with nonsense mutations introduced into gM or gN did not yield an infectious virus. However, when gM or gN of RRV were exchanged for gM or gN from KSHV, each of the KSHV-chimeric RRV BACmids restored virus replication and infectious spread. Interestingly, we also discovered that the substitution of KSHVgM into the RRV BACmid was associated with attenuation in viral spread, an effect that was not countered by a double-chimeric virus. In contrast, the substitution of RRV gN into a KSHV BACmid negatively affected the assembly of KSHV, independent of gM/gN complex formation. Therefore, here, we revealed that in KSHV and RRV, gM and gN are interchangeable, contribute to crucial functions for viral assembly and spread, and have evolved in a virus-specific manner. Although more research is needed to define the roles of gM and gN, our work establishes the first glycoprotein-chimeric viruses for KSHV and RRV, which can now be used to corroborate gM/gN as targets for a cancer vaccine.IMPORTANCEKaposi sarcoma (KS) is a human cancer caused by KSHV and is one of the most frequently occurring cancers in HIV/AIDS patients, as well as in regions where KSHV is endemic. In this report, we have constructed and authenticated the first KSHV glycoprotein-encoding chimeric viruses for evaluations in the RRV/rhesus macaque model and have also uncovered fundamental roles for the glycoproteins gM and gN. Our work is significant by successfully bridging the human-specific, species barrier that has previously restricted preclinical evaluations of the KSHV glycoproteins as vaccine targets <i>in vivo</i>. Although there is no KSHV-specific animal model that is widely used, these KSHV-chimeric viruses may be useful as tools to guide future vaccine design and strategy as vaccine candidates progress toward clinical trials.</p>","PeriodicalId":17583,"journal":{"name":"Journal of Virology","volume":" ","pages":"e0192224"},"PeriodicalIF":4.0000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11915806/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Virology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1128/jvi.01922-24","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/25 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"VIROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Rhesus macaque rhadinovirus (RRV) is a primate gamma-2 herpesvirus (rhadinovirus) closely related to Kaposi sarcoma-associated herpesvirus (KSHV), the human oncovirus that causes Kaposi sarcoma. Like other herpesviruses, KSHV and RRV encode numerous envelope glycoproteins involved in cell attachment, entry, as well as assembly and release of progeny virions from infected cells. Two glycoproteins postulated to form a complex and reported to be virus-neutralizing targets are glycoproteins M (gM) and N (gN). To investigate gM and gN in rhadinovirus infection, we utilized infectious and pathogenic bacterial artificial chromosomes (BAC). RRV BACmids with nonsense mutations introduced into gM or gN did not yield an infectious virus. However, when gM or gN of RRV were exchanged for gM or gN from KSHV, each of the KSHV-chimeric RRV BACmids restored virus replication and infectious spread. Interestingly, we also discovered that the substitution of KSHVgM into the RRV BACmid was associated with attenuation in viral spread, an effect that was not countered by a double-chimeric virus. In contrast, the substitution of RRV gN into a KSHV BACmid negatively affected the assembly of KSHV, independent of gM/gN complex formation. Therefore, here, we revealed that in KSHV and RRV, gM and gN are interchangeable, contribute to crucial functions for viral assembly and spread, and have evolved in a virus-specific manner. Although more research is needed to define the roles of gM and gN, our work establishes the first glycoprotein-chimeric viruses for KSHV and RRV, which can now be used to corroborate gM/gN as targets for a cancer vaccine.IMPORTANCEKaposi sarcoma (KS) is a human cancer caused by KSHV and is one of the most frequently occurring cancers in HIV/AIDS patients, as well as in regions where KSHV is endemic. In this report, we have constructed and authenticated the first KSHV glycoprotein-encoding chimeric viruses for evaluations in the RRV/rhesus macaque model and have also uncovered fundamental roles for the glycoproteins gM and gN. Our work is significant by successfully bridging the human-specific, species barrier that has previously restricted preclinical evaluations of the KSHV glycoproteins as vaccine targets in vivo. Although there is no KSHV-specific animal model that is widely used, these KSHV-chimeric viruses may be useful as tools to guide future vaccine design and strategy as vaccine candidates progress toward clinical trials.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Virology
Journal of Virology 医学-病毒学
CiteScore
10.10
自引率
7.40%
发文量
906
审稿时长
1 months
期刊介绍: Journal of Virology (JVI) explores the nature of the viruses of animals, archaea, bacteria, fungi, plants, and protozoa. We welcome papers on virion structure and assembly, viral genome replication and regulation of gene expression, genetic diversity and evolution, virus-cell interactions, cellular responses to infection, transformation and oncogenesis, gene delivery, viral pathogenesis and immunity, and vaccines and antiviral agents.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信