Effects of cardiac motion on dose distribution during stereotactic arrhythmia radioablation treatment: A simulation and phantom study.

IF 2 4区 医学 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Takayuki Miyachi, Takeshi Kamomae, Fumitaka Kawabata, Kuniyasu Okudaira, Mariko Kawamura, Shunichi Ishihara, Shinji Naganawa
{"title":"Effects of cardiac motion on dose distribution during stereotactic arrhythmia radioablation treatment: A simulation and phantom study.","authors":"Takayuki Miyachi, Takeshi Kamomae, Fumitaka Kawabata, Kuniyasu Okudaira, Mariko Kawamura, Shunichi Ishihara, Shinji Naganawa","doi":"10.1002/acm2.70021","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Cardiac motion may degrade dose distribution during stereotactic arrhythmia radioablation using the CyberKnife system, a robotic radiosurgery system. This study evaluated the dose distribution changes using a self-made cardiac dynamic platform that mimics cardiac motion.</p><p><strong>Methods: </strong>The cardiac dynamic platform was operated with amplitudes of 5 and 3.5 mm along the superior-inferior (SI) and left-right (LR) directions, respectively. The respiratory motion tracking of the CyberKnife system was applied when respiratory motion, simulated using a commercial platform, was introduced. The accuracy of respiratory motion tracking was evaluated by the correlation error between infrared markers and a fiducial marker. The dose distribution was compared with and without cardiac motion. The evaluations included error in the centroid analysis of the irradiated dose distribution, dose profile analysis in the SI and LR directions, and dose distribution analysis comparing the irradiated and planned dose distributions.</p><p><strong>Results: </strong>Cardiac motion increased the correlation error in the direction of motion. Cardiac motion displaced the centroid by up to 0.23 and 0.19 mm in the SI and LR directions, respectively. Cardiac motion blurring caused the distance of the isodose lines to become smaller (bigger) at higher (lower) doses in the SI direction. The gamma pass rate was reduced by cardiac motion but exceeded 94.1% with 1 mm/3% for all conditions. Respiratory motion tracking was also effective under cardiac motion. The cardiac motion slightly varied the dose at the edges of the irradiation volume.</p><p><strong>Conclusion: </strong>While cardiac motion increased respiratory tracking correlation errors, its effects on dose distribution were limited in this study. Further studies using motion phantoms that are close to a human or individual patient are necessary for a more detailed understanding of the effects of cardiac motion.</p>","PeriodicalId":14989,"journal":{"name":"Journal of Applied Clinical Medical Physics","volume":" ","pages":"e70021"},"PeriodicalIF":2.0000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Clinical Medical Physics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/acm2.70021","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: Cardiac motion may degrade dose distribution during stereotactic arrhythmia radioablation using the CyberKnife system, a robotic radiosurgery system. This study evaluated the dose distribution changes using a self-made cardiac dynamic platform that mimics cardiac motion.

Methods: The cardiac dynamic platform was operated with amplitudes of 5 and 3.5 mm along the superior-inferior (SI) and left-right (LR) directions, respectively. The respiratory motion tracking of the CyberKnife system was applied when respiratory motion, simulated using a commercial platform, was introduced. The accuracy of respiratory motion tracking was evaluated by the correlation error between infrared markers and a fiducial marker. The dose distribution was compared with and without cardiac motion. The evaluations included error in the centroid analysis of the irradiated dose distribution, dose profile analysis in the SI and LR directions, and dose distribution analysis comparing the irradiated and planned dose distributions.

Results: Cardiac motion increased the correlation error in the direction of motion. Cardiac motion displaced the centroid by up to 0.23 and 0.19 mm in the SI and LR directions, respectively. Cardiac motion blurring caused the distance of the isodose lines to become smaller (bigger) at higher (lower) doses in the SI direction. The gamma pass rate was reduced by cardiac motion but exceeded 94.1% with 1 mm/3% for all conditions. Respiratory motion tracking was also effective under cardiac motion. The cardiac motion slightly varied the dose at the edges of the irradiation volume.

Conclusion: While cardiac motion increased respiratory tracking correlation errors, its effects on dose distribution were limited in this study. Further studies using motion phantoms that are close to a human or individual patient are necessary for a more detailed understanding of the effects of cardiac motion.

立体定向心律失常放射消融治疗中心脏运动对剂量分布的影响:模拟和模拟研究。
目的:在立体定向心律失常放射消融过程中,心脏运动可能降低剂量分布。本研究采用自制的模拟心脏运动的心脏动力学平台评估剂量分布的变化。方法:心脏动力平台沿上下(SI)和左右(LR)方向分别以5和3.5 mm振幅操作。在引入商业平台模拟呼吸运动的基础上,应用射波刀系统的呼吸运动跟踪。通过红外标记物与基准标记物的相关误差评价呼吸运动跟踪的准确性。比较有和无心脏运动时的剂量分布。评价内容包括辐照剂量分布质心分析误差、SI和LR方向剂量分布分析误差、辐照剂量分布与计划剂量分布比较剂量分布分析误差。结果:心脏运动增加了运动方向上的相关误差。心脏运动使质心在SI和LR方向分别位移0.23和0.19 mm。心脏运动模糊导致等剂量线距离在SI方向高(低)剂量时变小(变大)。心脏运动降低了伽玛通过率,但在所有条件下均超过94.1%,为1 mm/3%。呼吸运动跟踪在心脏运动下也有效。心脏运动轻微改变照射体积边缘的剂量。结论:虽然心脏运动增加了呼吸跟踪相关误差,但其对剂量分布的影响在本研究中是有限的。为了更详细地了解心脏运动的影响,有必要进一步研究接近人类或个体患者的运动幻影。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.60
自引率
19.00%
发文量
331
审稿时长
3 months
期刊介绍: Journal of Applied Clinical Medical Physics is an international Open Access publication dedicated to clinical medical physics. JACMP welcomes original contributions dealing with all aspects of medical physics from scientists working in the clinical medical physics around the world. JACMP accepts only online submission. JACMP will publish: -Original Contributions: Peer-reviewed, investigations that represent new and significant contributions to the field. Recommended word count: up to 7500. -Review Articles: Reviews of major areas or sub-areas in the field of clinical medical physics. These articles may be of any length and are peer reviewed. -Technical Notes: These should be no longer than 3000 words, including key references. -Letters to the Editor: Comments on papers published in JACMP or on any other matters of interest to clinical medical physics. These should not be more than 1250 (including the literature) and their publication is only based on the decision of the editor, who occasionally asks experts on the merit of the contents. -Book Reviews: The editorial office solicits Book Reviews. -Announcements of Forthcoming Meetings: The Editor may provide notice of forthcoming meetings, course offerings, and other events relevant to clinical medical physics. -Parallel Opposed Editorial: We welcome topics relevant to clinical practice and medical physics profession. The contents can be controversial debate or opposed aspects of an issue. One author argues for the position and the other against. Each side of the debate contains an opening statement up to 800 words, followed by a rebuttal up to 500 words. Readers interested in participating in this series should contact the moderator with a proposed title and a short description of the topic
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信