{"title":"Network-based analysis of Alzheimer’s Disease genes using multi-omics network integration with graph diffusion","authors":"Softya Sebastian , Swarup Roy , Jugal Kalita","doi":"10.1016/j.jbi.2025.104797","DOIUrl":null,"url":null,"abstract":"<div><div>Alzheimer’s Disease (AD) is a complex neurodegenerative disorder affecting millions worldwide. Despite extensive research, the mechanisms behind AD remain elusive. Many studies suggest that disease-responsible genes often act as hub genes in biological networks. However, this assumption requires further investigation in the context of AD. To examine the network characteristics of known AD genes, it is crucial to construct a highly confident network, which is challenging to achieve using a single data source. This work integrates multi-omics networks inferred from microarray, single-cell RNA sequencing, and single-nuclei RNA sequencing expression data, weighted with protein interaction and gene ontology information. We generate a high-quality integrated network by utilizing various inference methods and combining them through a graph diffusion-based integration approach. This network is then analyzed to investigate the properties of known AD-specific genes. Our findings reveal that AD genes are not always high-degree or central hub nodes in the network. Instead, these genes are distributed across different quartiles of degree centrality while maintaining significant interconnections for effective regulation. Furthermore, our study highlights that peripheral genes, often overlooked, also play crucial roles by connecting to relevant disease nodes and hub genes. These findings challenge the conventional understanding that AD-responsible genes are primarily the hub genes in the network, offering new insights into the complex regulatory mechanisms of AD and suggesting novel directions for future research.</div></div>","PeriodicalId":15263,"journal":{"name":"Journal of Biomedical Informatics","volume":"164 ","pages":"Article 104797"},"PeriodicalIF":4.0000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Informatics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1532046425000267","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Alzheimer’s Disease (AD) is a complex neurodegenerative disorder affecting millions worldwide. Despite extensive research, the mechanisms behind AD remain elusive. Many studies suggest that disease-responsible genes often act as hub genes in biological networks. However, this assumption requires further investigation in the context of AD. To examine the network characteristics of known AD genes, it is crucial to construct a highly confident network, which is challenging to achieve using a single data source. This work integrates multi-omics networks inferred from microarray, single-cell RNA sequencing, and single-nuclei RNA sequencing expression data, weighted with protein interaction and gene ontology information. We generate a high-quality integrated network by utilizing various inference methods and combining them through a graph diffusion-based integration approach. This network is then analyzed to investigate the properties of known AD-specific genes. Our findings reveal that AD genes are not always high-degree or central hub nodes in the network. Instead, these genes are distributed across different quartiles of degree centrality while maintaining significant interconnections for effective regulation. Furthermore, our study highlights that peripheral genes, often overlooked, also play crucial roles by connecting to relevant disease nodes and hub genes. These findings challenge the conventional understanding that AD-responsible genes are primarily the hub genes in the network, offering new insights into the complex regulatory mechanisms of AD and suggesting novel directions for future research.
期刊介绍:
The Journal of Biomedical Informatics reflects a commitment to high-quality original research papers, reviews, and commentaries in the area of biomedical informatics methodology. Although we publish articles motivated by applications in the biomedical sciences (for example, clinical medicine, health care, population health, and translational bioinformatics), the journal emphasizes reports of new methodologies and techniques that have general applicability and that form the basis for the evolving science of biomedical informatics. Articles on medical devices; evaluations of implemented systems (including clinical trials of information technologies); or papers that provide insight into a biological process, a specific disease, or treatment options would generally be more suitable for publication in other venues. Papers on applications of signal processing and image analysis are often more suitable for biomedical engineering journals or other informatics journals, although we do publish papers that emphasize the information management and knowledge representation/modeling issues that arise in the storage and use of biological signals and images. System descriptions are welcome if they illustrate and substantiate the underlying methodology that is the principal focus of the report and an effort is made to address the generalizability and/or range of application of that methodology. Note also that, given the international nature of JBI, papers that deal with specific languages other than English, or with country-specific health systems or approaches, are acceptable for JBI only if they offer generalizable lessons that are relevant to the broad JBI readership, regardless of their country, language, culture, or health system.