A comprehensive validation study on the influencing factors of cough-based COVID-19 detection through multi-center data with abundant metadata

IF 4 2区 医学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Jiakun Shen , Xueshuai Zhang , Yanfen Tang , Pengyuan Zhang , Yonghong Yan , Pengfei Ye , Shaoxing Zhang , Zhihua Huang
{"title":"A comprehensive validation study on the influencing factors of cough-based COVID-19 detection through multi-center data with abundant metadata","authors":"Jiakun Shen ,&nbsp;Xueshuai Zhang ,&nbsp;Yanfen Tang ,&nbsp;Pengyuan Zhang ,&nbsp;Yonghong Yan ,&nbsp;Pengfei Ye ,&nbsp;Shaoxing Zhang ,&nbsp;Zhihua Huang","doi":"10.1016/j.jbi.2025.104798","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective:</h3><div>In recent years, COVID-19 has placed enormous burdens on healthcare systems. Currently, hundreds of thousands of new cases are reported monthly. World Health Organization is managing COVID-19 as a long-term disease, indicating that an efficient and low-cost detection method remains necessary. Previous studies have shown competitive results on cough-based COVID-19 detection combined with deep learning methods. However, most studies have focused only on improving classification performance on single-source data while neglecting the impact of various factors in real-world applications.</div></div><div><h3>Methods:</h3><div>To this end, we collected clinical and large-scale crowdsourced cough audios with abundant metadata to comprehensively validate the performance differences among different groups. Specifically, we leveraged self-supervised learning for pre-training and fine-tuned the model with data from different sources. Then based on the metadata, we compared the effects of factors such as cough types, symptoms, and infection stages on detection performance. Moreover, we recorded clinical indicators of viral load and antibody levels and observed the correlation between predicted probabilities and indicator values for the first time. Several open-source datasets were tested to verify the model generalizability.</div></div><div><h3>Results:</h3><div>The area under receiver operating characteristic curve is 0.79 for clinical data and 0.69 for crowdsourced data, indicating differences between clinical validation and real-world application. The performance in detecting symptomatic COVID-19 subjects is usually better than detecting asymptomatic COVID-19 subjects. The prediction results show weak correlation with clinical indicators on a small number of clinical data. Poor detection performance in recovery individuals and open-source datasets shows a limitation of existing cough-based detection models.</div></div><div><h3>Conclusion:</h3><div>Our study validated the model performance and limitations using multi-source data with abundant metadata, which helped researchers evaluate the feasibility of cough-based COVID-19 detection model in practical applications.</div></div>","PeriodicalId":15263,"journal":{"name":"Journal of Biomedical Informatics","volume":"164 ","pages":"Article 104798"},"PeriodicalIF":4.0000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Informatics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1532046425000279","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Objective:

In recent years, COVID-19 has placed enormous burdens on healthcare systems. Currently, hundreds of thousands of new cases are reported monthly. World Health Organization is managing COVID-19 as a long-term disease, indicating that an efficient and low-cost detection method remains necessary. Previous studies have shown competitive results on cough-based COVID-19 detection combined with deep learning methods. However, most studies have focused only on improving classification performance on single-source data while neglecting the impact of various factors in real-world applications.

Methods:

To this end, we collected clinical and large-scale crowdsourced cough audios with abundant metadata to comprehensively validate the performance differences among different groups. Specifically, we leveraged self-supervised learning for pre-training and fine-tuned the model with data from different sources. Then based on the metadata, we compared the effects of factors such as cough types, symptoms, and infection stages on detection performance. Moreover, we recorded clinical indicators of viral load and antibody levels and observed the correlation between predicted probabilities and indicator values for the first time. Several open-source datasets were tested to verify the model generalizability.

Results:

The area under receiver operating characteristic curve is 0.79 for clinical data and 0.69 for crowdsourced data, indicating differences between clinical validation and real-world application. The performance in detecting symptomatic COVID-19 subjects is usually better than detecting asymptomatic COVID-19 subjects. The prediction results show weak correlation with clinical indicators on a small number of clinical data. Poor detection performance in recovery individuals and open-source datasets shows a limitation of existing cough-based detection models.

Conclusion:

Our study validated the model performance and limitations using multi-source data with abundant metadata, which helped researchers evaluate the feasibility of cough-based COVID-19 detection model in practical applications.

Abstract Image

利用丰富元数据的多中心数据对基于咳嗽的COVID-19检测影响因素进行综合验证研究。
目的:近年来,COVID-19给卫生保健系统带来了巨大负担。目前,每月报告的新病例有数十万例。世界卫生组织将COVID-19作为一种长期疾病进行管理,这表明仍然需要一种高效、低成本的检测方法。此前的研究显示,基于咳嗽的新冠肺炎检测与深度学习方法相结合,取得了较好的结果。然而,大多数研究只关注于提高单源数据的分类性能,而忽略了实际应用中各种因素的影响。方法:为此,我们收集临床和大规模的众包咳嗽音频,这些音频具有丰富的元数据,以综合验证不同组间的表现差异。具体来说,我们利用自监督学习进行预训练,并使用来自不同来源的数据对模型进行微调。然后,基于元数据,我们比较了咳嗽类型、症状和感染阶段等因素对检测性能的影响。此外,我们记录了病毒载量和抗体水平的临床指标,并首次观察到预测概率与指标值之间的相关性。对几个开源数据集进行了测试,以验证模型的泛化性。结果:临床数据的受试者工作特征曲线下面积为0.79,众包数据的受试者工作特征曲线下面积为0.69,表明临床验证与实际应用存在差异。对有症状感染者的检测效果通常优于对无症状感染者的检测效果。在少量临床资料上,预测结果与临床指标相关性较弱。在恢复个体和开源数据集上较差的检测性能显示了现有基于咳嗽的检测模型的局限性。结论:本研究利用多源数据和丰富的元数据验证了模型的性能和局限性,有助于评估基于咳嗽的新冠肺炎检测模型在实际应用中的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Biomedical Informatics
Journal of Biomedical Informatics 医学-计算机:跨学科应用
CiteScore
8.90
自引率
6.70%
发文量
243
审稿时长
32 days
期刊介绍: The Journal of Biomedical Informatics reflects a commitment to high-quality original research papers, reviews, and commentaries in the area of biomedical informatics methodology. Although we publish articles motivated by applications in the biomedical sciences (for example, clinical medicine, health care, population health, and translational bioinformatics), the journal emphasizes reports of new methodologies and techniques that have general applicability and that form the basis for the evolving science of biomedical informatics. Articles on medical devices; evaluations of implemented systems (including clinical trials of information technologies); or papers that provide insight into a biological process, a specific disease, or treatment options would generally be more suitable for publication in other venues. Papers on applications of signal processing and image analysis are often more suitable for biomedical engineering journals or other informatics journals, although we do publish papers that emphasize the information management and knowledge representation/modeling issues that arise in the storage and use of biological signals and images. System descriptions are welcome if they illustrate and substantiate the underlying methodology that is the principal focus of the report and an effort is made to address the generalizability and/or range of application of that methodology. Note also that, given the international nature of JBI, papers that deal with specific languages other than English, or with country-specific health systems or approaches, are acceptable for JBI only if they offer generalizable lessons that are relevant to the broad JBI readership, regardless of their country, language, culture, or health system.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信