{"title":"LINC01094 as a diagnostic marker of osteoporotic fractures is involved in fracture healing.","authors":"Jinhuang Xu, Zhong Tian, Lina Huang, Yongsheng Yu","doi":"10.1530/JOE-25-0008","DOIUrl":null,"url":null,"abstract":"<p><p>Fragility fractures are frequently observed among the elderly population with osteoporosis, and the fundamental process of fractured recovery relies on the differentiation of osteoblasts. LINC01094 was a crucial lncRNA in the regulation of the progression of diseases, but its role in osteoporotic fracture remained unclear. This study was to investigate alterations in the expression of LINC01094 in patients with osteoporotic fracture, evaluate its potential role as a diagnostic biomarker, and explore its effects on osteoblast differentiation. The circulating LINC01094 was tested using serum from 60 healthy individuals, 60 patients with osteoporosis, and 74 patients with osteoporotic fractures by RT-qPCR. The receiver operating characteristics curve was conducted to evaluate its diagnostic performance. The function of LINC01094 was measured in both MC3T3-E1 and BMSC cells. ALP activity detection and ELISA assay were performed to measure the osteogenesis markers, including OCN, and Runx2 expression. Dual-luciferase reporter assay was utilized to validate the downstream miR-362-3p of LINC01094 in cells. The expression of circulating LINC01094 was increased in osteoporotic patients with/without fracture than in healthy controls. LINC01094 can differentiate osteoporotic patients from healthy ones and distinguish osteoporotic fracture patients from those without fractures. LINC01094 levels were decreased in osteogenically induced MC3T3-E1 and BMSC cells. miR-362-3p was a direct target of LINC01094 and miR-362-3p partially reversed the effect of LINC01094 in cell viability and differentiation processes. Silencing LINC01094 is crucial for facilitating bone formation and has the potential to serve as both a diagnostic indicator and a treatment target for osteoporosis.</p>","PeriodicalId":15740,"journal":{"name":"Journal of Endocrinology","volume":" ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Endocrinology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1530/JOE-25-0008","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Fragility fractures are frequently observed among the elderly population with osteoporosis, and the fundamental process of fractured recovery relies on the differentiation of osteoblasts. LINC01094 was a crucial lncRNA in the regulation of the progression of diseases, but its role in osteoporotic fracture remained unclear. This study was to investigate alterations in the expression of LINC01094 in patients with osteoporotic fracture, evaluate its potential role as a diagnostic biomarker, and explore its effects on osteoblast differentiation. The circulating LINC01094 was tested using serum from 60 healthy individuals, 60 patients with osteoporosis, and 74 patients with osteoporotic fractures by RT-qPCR. The receiver operating characteristics curve was conducted to evaluate its diagnostic performance. The function of LINC01094 was measured in both MC3T3-E1 and BMSC cells. ALP activity detection and ELISA assay were performed to measure the osteogenesis markers, including OCN, and Runx2 expression. Dual-luciferase reporter assay was utilized to validate the downstream miR-362-3p of LINC01094 in cells. The expression of circulating LINC01094 was increased in osteoporotic patients with/without fracture than in healthy controls. LINC01094 can differentiate osteoporotic patients from healthy ones and distinguish osteoporotic fracture patients from those without fractures. LINC01094 levels were decreased in osteogenically induced MC3T3-E1 and BMSC cells. miR-362-3p was a direct target of LINC01094 and miR-362-3p partially reversed the effect of LINC01094 in cell viability and differentiation processes. Silencing LINC01094 is crucial for facilitating bone formation and has the potential to serve as both a diagnostic indicator and a treatment target for osteoporosis.
期刊介绍:
Journal of Endocrinology is a leading global journal that publishes original research articles, reviews and science guidelines. Its focus is on endocrine physiology and metabolism, including hormone secretion; hormone action; biological effects. The journal publishes basic and translational studies at the organ, tissue and whole organism level.