Dynamic Changes in Gene Expression Through Aging in Drosophila melanogaster Heads.

IF 2.1 3区 生物学 Q3 GENETICS & HEREDITY
Katherine M Hanson, Stuart J Macdonald
{"title":"Dynamic Changes in Gene Expression Through Aging in Drosophila melanogaster Heads.","authors":"Katherine M Hanson, Stuart J Macdonald","doi":"10.1093/g3journal/jkaf039","DOIUrl":null,"url":null,"abstract":"<p><p>Work in many systems has shown large-scale changes in gene expression during aging. However, many studies employ just two, arbitrarily-chosen timepoints at which to measure expression, and can only observe an increase or a decrease in expression between \"young\" and \"old\" animals, failing to capture any dynamic, non-linear changes that occur throughout the aging process. We used RNA sequencing to measure expression in male head tissue at 15 timepoints through the lifespan of an inbred Drosophila melanogaster strain. We detected >6,000 significant, age-related genes, nearly all of which have been seen in previous Drosophila aging expression studies, and which include several known to harbor lifespan-altering mutations. We grouped our gene set into 28 clusters via their temporal expression change, observing a diversity of trajectories; some clusters show a linear change over time, while others show more complex, non-linear patterns. Notably, re-analysis of our dataset comparing the earliest and latest timepoints - mimicking a two-timepoint design - revealed fewer differentially-expressed genes (around 4,500). Additionally, those genes exhibiting complex expression trajectories in our multi-timepoint analysis were most impacted in this re-analysis; their identification, and the inferred change in gene expression with age, was often dependent on the timepoints chosen. Informed by our trajectory-based clusters, we executed a series of gene enrichment analyses, identifying enriched functions/pathways in all clusters, including the commonly seen increase in stress- and immune-related gene expression with age. Finally, we developed a pair of accessible Shiny apps to enable exploration of our differential expression and gene enrichment results.</p>","PeriodicalId":12468,"journal":{"name":"G3: Genes|Genomes|Genetics","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"G3: Genes|Genomes|Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/g3journal/jkaf039","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Work in many systems has shown large-scale changes in gene expression during aging. However, many studies employ just two, arbitrarily-chosen timepoints at which to measure expression, and can only observe an increase or a decrease in expression between "young" and "old" animals, failing to capture any dynamic, non-linear changes that occur throughout the aging process. We used RNA sequencing to measure expression in male head tissue at 15 timepoints through the lifespan of an inbred Drosophila melanogaster strain. We detected >6,000 significant, age-related genes, nearly all of which have been seen in previous Drosophila aging expression studies, and which include several known to harbor lifespan-altering mutations. We grouped our gene set into 28 clusters via their temporal expression change, observing a diversity of trajectories; some clusters show a linear change over time, while others show more complex, non-linear patterns. Notably, re-analysis of our dataset comparing the earliest and latest timepoints - mimicking a two-timepoint design - revealed fewer differentially-expressed genes (around 4,500). Additionally, those genes exhibiting complex expression trajectories in our multi-timepoint analysis were most impacted in this re-analysis; their identification, and the inferred change in gene expression with age, was often dependent on the timepoints chosen. Informed by our trajectory-based clusters, we executed a series of gene enrichment analyses, identifying enriched functions/pathways in all clusters, including the commonly seen increase in stress- and immune-related gene expression with age. Finally, we developed a pair of accessible Shiny apps to enable exploration of our differential expression and gene enrichment results.

求助全文
约1分钟内获得全文 求助全文
来源期刊
G3: Genes|Genomes|Genetics
G3: Genes|Genomes|Genetics GENETICS & HEREDITY-
CiteScore
5.10
自引率
3.80%
发文量
305
审稿时长
3-8 weeks
期刊介绍: G3: Genes, Genomes, Genetics provides a forum for the publication of high‐quality foundational research, particularly research that generates useful genetic and genomic information such as genome maps, single gene studies, genome‐wide association and QTL studies, as well as genome reports, mutant screens, and advances in methods and technology. The Editorial Board of G3 believes that rapid dissemination of these data is the necessary foundation for analysis that leads to mechanistic insights. G3, published by the Genetics Society of America, meets the critical and growing need of the genetics community for rapid review and publication of important results in all areas of genetics. G3 offers the opportunity to publish the puzzling finding or to present unpublished results that may not have been submitted for review and publication due to a perceived lack of a potential high-impact finding. G3 has earned the DOAJ Seal, which is a mark of certification for open access journals, awarded by DOAJ to journals that achieve a high level of openness, adhere to Best Practice and high publishing standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信