Unraveling the Mechanism of Action, Binding Sites, and Therapeutic Advances of CFTR Modulators: A Narrative Review.

IF 2.8 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Debora Baroni
{"title":"Unraveling the Mechanism of Action, Binding Sites, and Therapeutic Advances of CFTR Modulators: A Narrative Review.","authors":"Debora Baroni","doi":"10.3390/cimb47020119","DOIUrl":null,"url":null,"abstract":"<p><p>Cystic fibrosis (CF) is a recessive genetic disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) protein, a chloride and bicarbonate channel localized on the plasma membrane of epithelial cells. Over the last three decades, high-throughput screening assays have been extensively employed in identifying drugs that target specific defects arising from CFTR mutations. The two main categories of such compounds are potentiators, which enhance CFTR gating by increasing the channel's open probability, and correctors, which improve CFTR protein folding and trafficking to the plasma membrane. In addition to these, other investigational molecules include amplifiers and stabilizers, which enhance the levels and the stability of CFTR on the cell surface, and read-through agents that promote the insertion of correct amino acids at premature termination codons. Currently, four CFTR modulators are clinically approved: the potentiator ivacaftor (VX-770), either as monotherapy or in combination with the correctors lumacaftor (VX-809), tezacaftor (VX-661), and elexacaftor (VX-445). Among these, the triple combination VX-445/VX-661/VX-770 (marketed as Trikafta<sup>®</sup> in the US and Kaftrio<sup>®</sup> in Europe) has emerged as the most effective CFTR modulator therapy to date, demonstrating significant clinical benefits in phase III trials for patients with at least one F508del CFTR allele. Despite these advancements, the mechanisms of action and binding sites of these modulators on CFTR have only recently begun to be elucidated. A deeper understanding of these mechanisms could provide essential insights for developing more potent and effective modulators, particularly in combination therapies. This narrative review delves into the mechanism of action, binding sites, and combinatorial effects of approved and investigational CFTR modulators, highlighting ongoing efforts to broaden therapeutic options for individuals with CF.</p>","PeriodicalId":10839,"journal":{"name":"Current Issues in Molecular Biology","volume":"47 2","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11854517/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Issues in Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/cimb47020119","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Cystic fibrosis (CF) is a recessive genetic disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) protein, a chloride and bicarbonate channel localized on the plasma membrane of epithelial cells. Over the last three decades, high-throughput screening assays have been extensively employed in identifying drugs that target specific defects arising from CFTR mutations. The two main categories of such compounds are potentiators, which enhance CFTR gating by increasing the channel's open probability, and correctors, which improve CFTR protein folding and trafficking to the plasma membrane. In addition to these, other investigational molecules include amplifiers and stabilizers, which enhance the levels and the stability of CFTR on the cell surface, and read-through agents that promote the insertion of correct amino acids at premature termination codons. Currently, four CFTR modulators are clinically approved: the potentiator ivacaftor (VX-770), either as monotherapy or in combination with the correctors lumacaftor (VX-809), tezacaftor (VX-661), and elexacaftor (VX-445). Among these, the triple combination VX-445/VX-661/VX-770 (marketed as Trikafta® in the US and Kaftrio® in Europe) has emerged as the most effective CFTR modulator therapy to date, demonstrating significant clinical benefits in phase III trials for patients with at least one F508del CFTR allele. Despite these advancements, the mechanisms of action and binding sites of these modulators on CFTR have only recently begun to be elucidated. A deeper understanding of these mechanisms could provide essential insights for developing more potent and effective modulators, particularly in combination therapies. This narrative review delves into the mechanism of action, binding sites, and combinatorial effects of approved and investigational CFTR modulators, highlighting ongoing efforts to broaden therapeutic options for individuals with CF.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Current Issues in Molecular Biology
Current Issues in Molecular Biology 生物-生化研究方法
CiteScore
2.90
自引率
3.20%
发文量
380
审稿时长
>12 weeks
期刊介绍: Current Issues in Molecular Biology (CIMB) is a peer-reviewed journal publishing review articles and minireviews in all areas of molecular biology and microbiology. Submitted articles are subject to an Article Processing Charge (APC) and are open access immediately upon publication. All manuscripts undergo a peer-review process.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信