DEFA1, Primarily Expressed at the Invasive Tumor Front, Promotes OSCC Cell Invasion and Tumor Growth.

IF 2.6 4区 医学 Q2 GENETICS & HEREDITY
Hojin Jeong, Sang Woong Park, Young Sun Hwang
{"title":"DEFA1, Primarily Expressed at the Invasive Tumor Front, Promotes OSCC Cell Invasion and Tumor Growth.","authors":"Hojin Jeong, Sang Woong Park, Young Sun Hwang","doi":"10.21873/cgp.20504","DOIUrl":null,"url":null,"abstract":"<p><strong>Background/aim: </strong>The tumor microenvironment greatly influences cancer occurrence, progression, and treatment resistance, making it a key target alongside cancer cells. In squamous cell carcinoma, the invasive front is crucial for studying invasion mechanisms driven by the surrounding microenvironment and for identifying biomarkers to diagnose and predict invasive cancer. In this study, we aimed to elucidate the regulation of cancer characteristics through the interactions between factors at the invasive tumor front and the surrounding tumor microenvironment.</p><p><strong>Materials and methods: </strong>The invasive tumor front (ITF) and tumor center (TC) of collective cancer invasion were analyzed using microarray to compare gene expression. A stable cell line with depleted DEFA1 expression was established, and its effect on cancer growth was observed using a mouse tongue xenograft model. Invasive activity was assessed using Transwell assays. Gene profiling of cancer cells and analysis of secreted proteins interacting with U937 monocytic cells during co-culture were conducted using QuantSeq 3' mRNA sequencing and LC-MS/MS analysis.</p><p><strong>Results: </strong>DEFA1 was overexpressed at the ITF of collective cancer invasion. YD10B cells with depleted DEFA1 expression exhibited significantly reduced invasiveness and tumor growth without changes in the cell cycle distribution. Co-culture with U937 cells significantly enhanced the invasiveness of YD10B cells, which was inhibited by anti-DEFA1 treatment. QuantSeq 3' mRNA sequencing and LC-MS/MS analyses confirmed that DEFA1 derived from U937 cells increased the invasiveness of YD10B cells. Recombinant DEFA1 (rDEFA1) significantly enhanced the invasiveness of YD10B cells <i>via</i> the JNK MAPK/NF-[Formula: see text]B signaling pathway, independent of changes in DEFA1 expression within YD10B cells.</p><p><strong>Conclusion: </strong>DEFA1 is crucial for cancer invasion and growth, and monocyte-derived DEFA1 exacerbates these traits. This study highlights DEFA1's role in promoting invasion at the tumor front, where interactions with the microenvironment are active.</p>","PeriodicalId":9516,"journal":{"name":"Cancer Genomics & Proteomics","volume":"22 2","pages":"326-345"},"PeriodicalIF":2.6000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11880931/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Genomics & Proteomics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.21873/cgp.20504","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Background/aim: The tumor microenvironment greatly influences cancer occurrence, progression, and treatment resistance, making it a key target alongside cancer cells. In squamous cell carcinoma, the invasive front is crucial for studying invasion mechanisms driven by the surrounding microenvironment and for identifying biomarkers to diagnose and predict invasive cancer. In this study, we aimed to elucidate the regulation of cancer characteristics through the interactions between factors at the invasive tumor front and the surrounding tumor microenvironment.

Materials and methods: The invasive tumor front (ITF) and tumor center (TC) of collective cancer invasion were analyzed using microarray to compare gene expression. A stable cell line with depleted DEFA1 expression was established, and its effect on cancer growth was observed using a mouse tongue xenograft model. Invasive activity was assessed using Transwell assays. Gene profiling of cancer cells and analysis of secreted proteins interacting with U937 monocytic cells during co-culture were conducted using QuantSeq 3' mRNA sequencing and LC-MS/MS analysis.

Results: DEFA1 was overexpressed at the ITF of collective cancer invasion. YD10B cells with depleted DEFA1 expression exhibited significantly reduced invasiveness and tumor growth without changes in the cell cycle distribution. Co-culture with U937 cells significantly enhanced the invasiveness of YD10B cells, which was inhibited by anti-DEFA1 treatment. QuantSeq 3' mRNA sequencing and LC-MS/MS analyses confirmed that DEFA1 derived from U937 cells increased the invasiveness of YD10B cells. Recombinant DEFA1 (rDEFA1) significantly enhanced the invasiveness of YD10B cells via the JNK MAPK/NF-[Formula: see text]B signaling pathway, independent of changes in DEFA1 expression within YD10B cells.

Conclusion: DEFA1 is crucial for cancer invasion and growth, and monocyte-derived DEFA1 exacerbates these traits. This study highlights DEFA1's role in promoting invasion at the tumor front, where interactions with the microenvironment are active.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Cancer Genomics & Proteomics
Cancer Genomics & Proteomics ONCOLOGY-GENETICS & HEREDITY
CiteScore
5.00
自引率
8.00%
发文量
51
期刊介绍: Cancer Genomics & Proteomics (CGP) is an international peer-reviewed journal designed to publish rapidly high quality articles and reviews on the application of genomic and proteomic technology to basic, experimental and clinical cancer research. In this site you may find information concerning the editorial board, editorial policy, issue contents, subscriptions, submission of manuscripts and advertising. The first issue of CGP circulated in January 2004. Cancer Genomics & Proteomics is a journal of the International Institute of Anticancer Research. From January 2013 CGP is converted to an online-only open access journal. Cancer Genomics & Proteomics supports (a) the aims and the research projects of the INTERNATIONAL INSTITUTE OF ANTICANCER RESEARCH and (b) the organization of the INTERNATIONAL CONFERENCES OF ANTICANCER RESEARCH.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信