Sajid M Hossain, Yiyun Rao, Jahid O Hossain, Justin R Pritchard, Boyang Zhao
{"title":"goloco: a web application to create genome scale information from surprisingly small experiments.","authors":"Sajid M Hossain, Yiyun Rao, Jahid O Hossain, Justin R Pritchard, Boyang Zhao","doi":"10.1186/s12859-025-06070-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Functional genomics aims to decipher gene function by observing cellular changes when specific genes are disrupted using CRISPR technology. However, these experiments are limited by scalability, as comprehensive CRISPR screens require extensive resources, involving millions of cells and thousands of sgRNAs, making large-scale studies challenging. We propose a novel approach with \"CRISPR lossy compression\" to reduce the complexity of CRISPR screens by focusing on key genetic nodes that can infer genome-wide phenotypes. These condensed sets, comprising 100 to 1,000 genes, enable previously impractical genome-wide screens tractable.</p><p><strong>Results: </strong>To make this approach accessible to the wider scientific community, we developed goloco, an interactive web application that allows users to explore genome-scale loss-of-function phenotypes from as few as 100 pooled measurements. The tool is complemented by a wide array of analyses, including volcano plot visualizations, regression and network analyses.</p><p><strong>Conclusions: </strong>This tool goloco empowers researchers to conduct genome-scale functional studies with minimal experimental overhead, broadening the accessibility of large-scale functional genomics research.</p>","PeriodicalId":8958,"journal":{"name":"BMC Bioinformatics","volume":"26 1","pages":"61"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12859-025-06070-y","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Functional genomics aims to decipher gene function by observing cellular changes when specific genes are disrupted using CRISPR technology. However, these experiments are limited by scalability, as comprehensive CRISPR screens require extensive resources, involving millions of cells and thousands of sgRNAs, making large-scale studies challenging. We propose a novel approach with "CRISPR lossy compression" to reduce the complexity of CRISPR screens by focusing on key genetic nodes that can infer genome-wide phenotypes. These condensed sets, comprising 100 to 1,000 genes, enable previously impractical genome-wide screens tractable.
Results: To make this approach accessible to the wider scientific community, we developed goloco, an interactive web application that allows users to explore genome-scale loss-of-function phenotypes from as few as 100 pooled measurements. The tool is complemented by a wide array of analyses, including volcano plot visualizations, regression and network analyses.
Conclusions: This tool goloco empowers researchers to conduct genome-scale functional studies with minimal experimental overhead, broadening the accessibility of large-scale functional genomics research.
期刊介绍:
BMC Bioinformatics is an open access, peer-reviewed journal that considers articles on all aspects of the development, testing and novel application of computational and statistical methods for the modeling and analysis of all kinds of biological data, as well as other areas of computational biology.
BMC Bioinformatics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.