Recurrent Missense Driver STAT5B N642H Mutation in Children Transiting into Adolescence, with Acute Lymphoid Leukemia and its In silico Inhibition.

IF 2.6 4区 医学 Q3 CHEMISTRY, MEDICINAL
Rehana Yasmin, Rashda Abbasi, Tajdar Jahangir Gohar, Hina, Nafees Ahmad, Sajid Malik
{"title":"Recurrent Missense Driver STAT5B N642H Mutation in Children Transiting into Adolescence, with Acute Lymphoid Leukemia and its In silico Inhibition.","authors":"Rehana Yasmin, Rashda Abbasi, Tajdar Jahangir Gohar, Hina, Nafees Ahmad, Sajid Malik","doi":"10.2174/0118715206350463241226032324","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The occurrence of gain of function mutations in STAT5B has been associated to survival, and drug resistance in Leukemia. In silico screening of compounds having inhibitory potential towards mutated proteins, can be helpful in the development of specific inhibitors.</p><p><strong>Objective: </strong>This study was designed to screen selected JAK-STAT mutations in leukemia patients and virtual exploration of molecular interaction of potential inhibitors with their mutated products.</p><p><strong>Methods: </strong>In total 276 patients were randomly recruited for this study. Demographic and clinical data were summarized. The genetic status of JAK1V623A, JAK2 S473 and STAT5BN642H were screened through allele specific PCR. In-silico analysis was performed on wild type and mutant protein sequences retrieved from Protein databank. The ligands and protein were prepared through standard protocols, and docking was performed through Auto Dock Vina 1.2.0.</p><p><strong>Results: </strong>Acute lymphoblastic leukemia comprises 70% of the total patients. Male to female ratio was 3:1. All the patients were homozygous for JAK1V623A, JAK2 S473 major allele. However, 6 patients (5 male, 1 female) with ALL were STAT5BN642H+. The molecular docking of the ligands to wild type and STAT5BN642H+revealed that AC- 4-130, Pimozide, Indirubin and Stafib-2 have higher but differential docking affinities for SH2-domain of both normal and mutated STAT5B. However, AC-4-130 has a higher affinity for wild type and Stafib-2 has stable molecular interaction with STAT5BN642H+.</p><p><strong>Conclusion: </strong>The aggressive form of pediatric leukemia, carrying STAT5BN642H+ mutation is identified in the studied population. It is predicted that AC-14-30 and stafib-2 have potential for inhibition of constitutively active STAT5B if optimized for use in combination therapy.</p>","PeriodicalId":7934,"journal":{"name":"Anti-cancer agents in medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anti-cancer agents in medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0118715206350463241226032324","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The occurrence of gain of function mutations in STAT5B has been associated to survival, and drug resistance in Leukemia. In silico screening of compounds having inhibitory potential towards mutated proteins, can be helpful in the development of specific inhibitors.

Objective: This study was designed to screen selected JAK-STAT mutations in leukemia patients and virtual exploration of molecular interaction of potential inhibitors with their mutated products.

Methods: In total 276 patients were randomly recruited for this study. Demographic and clinical data were summarized. The genetic status of JAK1V623A, JAK2 S473 and STAT5BN642H were screened through allele specific PCR. In-silico analysis was performed on wild type and mutant protein sequences retrieved from Protein databank. The ligands and protein were prepared through standard protocols, and docking was performed through Auto Dock Vina 1.2.0.

Results: Acute lymphoblastic leukemia comprises 70% of the total patients. Male to female ratio was 3:1. All the patients were homozygous for JAK1V623A, JAK2 S473 major allele. However, 6 patients (5 male, 1 female) with ALL were STAT5BN642H+. The molecular docking of the ligands to wild type and STAT5BN642H+revealed that AC- 4-130, Pimozide, Indirubin and Stafib-2 have higher but differential docking affinities for SH2-domain of both normal and mutated STAT5B. However, AC-4-130 has a higher affinity for wild type and Stafib-2 has stable molecular interaction with STAT5BN642H+.

Conclusion: The aggressive form of pediatric leukemia, carrying STAT5BN642H+ mutation is identified in the studied population. It is predicted that AC-14-30 and stafib-2 have potential for inhibition of constitutively active STAT5B if optimized for use in combination therapy.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Anti-cancer agents in medicinal chemistry
Anti-cancer agents in medicinal chemistry ONCOLOGY-CHEMISTRY, MEDICINAL
CiteScore
5.10
自引率
3.60%
发文量
323
审稿时长
4-8 weeks
期刊介绍: Formerly: Current Medicinal Chemistry - Anti-Cancer Agents. Anti-Cancer Agents in Medicinal Chemistry aims to cover all the latest and outstanding developments in medicinal chemistry and rational drug design for the discovery of anti-cancer agents. Each issue contains a series of timely in-depth reviews and guest edited issues written by leaders in the field covering a range of current topics in cancer medicinal chemistry. The journal only considers high quality research papers for publication. Anti-Cancer Agents in Medicinal Chemistry is an essential journal for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important developments in cancer drug discovery.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信