A model for predicting day-100 stem cell transplant-related mortality in AL amyloidosis

IF 4.5 2区 医学 Q1 HEMATOLOGY
Eli Muchtar, Angela Dispenzieri, Vaishali Sanchorawala, Hamza Hassan, Raphael Mwangi, Matthew Maurer, Francis Buadi, Hans C. Lee, Muzaffar Qazilbash, Andrew Kin, Jeffrey Zonder, Sally Arai, Michelle M. Chin, Rajshekhar Chakraborty, Suzanne Lentzsch, Hila Magen, Eden Shkury, Caitlin Sarubbi, Heather Landau, Stefan Schönland, Ute Hegenbart, Morie Gertz
{"title":"A model for predicting day-100 stem cell transplant-related mortality in AL amyloidosis","authors":"Eli Muchtar, Angela Dispenzieri, Vaishali Sanchorawala, Hamza Hassan, Raphael Mwangi, Matthew Maurer, Francis Buadi, Hans C. Lee, Muzaffar Qazilbash, Andrew Kin, Jeffrey Zonder, Sally Arai, Michelle M. Chin, Rajshekhar Chakraborty, Suzanne Lentzsch, Hila Magen, Eden Shkury, Caitlin Sarubbi, Heather Landau, Stefan Schönland, Ute Hegenbart, Morie Gertz","doi":"10.1038/s41409-025-02535-z","DOIUrl":null,"url":null,"abstract":"Autologous stem cell Transplant (ASCT)-related mortality (TRM) in AL amyloidosis remains elevated. AL amyloidosis patients (n = 1718) from 9 centers, transplanted 2003–2020 were included. Pre-ASCT variables of interest were assessed for association with day-100 all-cause mortality. A random forest (RF) classifier with 10-fold cross-validation assisted in variable selection. The final model was fitted using logistic regression. The median age at ASCT was 58 years. Day-100 TRM occurred in 75 patients (4.4%) with the predominant causes being shock, high-grade arrhythmia, and organ failure. Ten factors were associated with day-100 TRM on univariate analysis. RF classifier using these variables generated a model with an area under the curve (AUC) of 0.72 ± 0.12. To refine the model selection using importance hierarchy function, a 4-variable model [NT-proBNP/BNP, serum albumin, ECOG performance status (PS), and systolic blood pressure] was built with an AUC of 0.70 ± 0.12. Based on logistic regression coefficients, ECOG PS 2/3 was assigned two points while other adverse predictors 1-point each. The model score range was 0–5, with a day-100 TRM of 0.46%, 3.2%, 5.8%, and 14.5% for 0, 1, 2, and ≥3 points, respectively. This model to predict day-100 TRM in AL amyloidosis allows better-informed decision-making in this heterogeneous disease.","PeriodicalId":9126,"journal":{"name":"Bone Marrow Transplantation","volume":"60 5","pages":"595-602"},"PeriodicalIF":4.5000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41409-025-02535-z.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bone Marrow Transplantation","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41409-025-02535-z","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Autologous stem cell Transplant (ASCT)-related mortality (TRM) in AL amyloidosis remains elevated. AL amyloidosis patients (n = 1718) from 9 centers, transplanted 2003–2020 were included. Pre-ASCT variables of interest were assessed for association with day-100 all-cause mortality. A random forest (RF) classifier with 10-fold cross-validation assisted in variable selection. The final model was fitted using logistic regression. The median age at ASCT was 58 years. Day-100 TRM occurred in 75 patients (4.4%) with the predominant causes being shock, high-grade arrhythmia, and organ failure. Ten factors were associated with day-100 TRM on univariate analysis. RF classifier using these variables generated a model with an area under the curve (AUC) of 0.72 ± 0.12. To refine the model selection using importance hierarchy function, a 4-variable model [NT-proBNP/BNP, serum albumin, ECOG performance status (PS), and systolic blood pressure] was built with an AUC of 0.70 ± 0.12. Based on logistic regression coefficients, ECOG PS 2/3 was assigned two points while other adverse predictors 1-point each. The model score range was 0–5, with a day-100 TRM of 0.46%, 3.2%, 5.8%, and 14.5% for 0, 1, 2, and ≥3 points, respectively. This model to predict day-100 TRM in AL amyloidosis allows better-informed decision-making in this heterogeneous disease.

Abstract Image

预测AL淀粉样变性患者100天干细胞移植相关死亡率的模型。
AL淀粉样变性患者的自体干细胞移植(ASCT)相关死亡率(TRM)仍然升高。本研究纳入了2003-2020年9个中心的AL淀粉样变性患者(n = 1718)。评估asct前相关变量与第100天全因死亡率的相关性。随机森林(RF)分类器与10倍交叉验证辅助变量选择。最后的模型使用逻辑回归进行拟合。ASCT的中位年龄为58岁。第100天发生TRM的患者有75例(4.4%),主要原因是休克、高度心律失常和器官衰竭。单因素分析显示,10个因素与第100天TRM相关。使用这些变量的RF分类器生成的模型曲线下面积(AUC)为0.72±0.12。为了使用重要性层次函数来优化模型选择,建立了一个4变量模型[NT-proBNP/BNP,血清白蛋白,ECOG性能状态(PS)和收缩压],AUC为0.70±0.12。根据logistic回归系数,ECOG PS 2/3评分2分,其他不良预测因子评分各1分。模型评分范围为0-5分,0、1、2和≥3分的100天TRM分别为0.46%、3.2%、5.8%和14.5%。该模型预测AL淀粉样变的第100天TRM,可以在这种异质性疾病中做出更明智的决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bone Marrow Transplantation
Bone Marrow Transplantation 医学-免疫学
CiteScore
8.40
自引率
8.30%
发文量
337
审稿时长
6 months
期刊介绍: Bone Marrow Transplantation publishes high quality, peer reviewed original research that addresses all aspects of basic biology and clinical use of haemopoietic stem cell transplantation. The broad scope of the journal thus encompasses topics such as stem cell biology, e.g., kinetics and cytokine control, transplantation immunology e.g., HLA and matching techniques, translational research, and clinical results of specific transplant protocols. Bone Marrow Transplantation publishes 24 issues a year.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信