Endothelial PPARδ Ablation Exacerbates Vascular Hyperpermeability via STAT1/CXCL10 Signaling in Acute Lung Injury.

IF 16.5 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS
Circulation research Pub Date : 2025-03-28 Epub Date: 2025-02-25 DOI:10.1161/CIRCRESAHA.124.325855
Huiling Hong, Yalan Wu, Yangxian Li, Yumeng Han, Xiaoyun Cao, Vivian Wei Yan Wu, Thomas Ting Hei Chan, Jingying Zhou, Qin Cao, Kathy O Lui, Chun-Kwok Wong, Zhiyu Dai, Xiao Yu Tian
{"title":"Endothelial PPARδ Ablation Exacerbates Vascular Hyperpermeability via STAT1/CXCL10 Signaling in Acute Lung Injury.","authors":"Huiling Hong, Yalan Wu, Yangxian Li, Yumeng Han, Xiaoyun Cao, Vivian Wei Yan Wu, Thomas Ting Hei Chan, Jingying Zhou, Qin Cao, Kathy O Lui, Chun-Kwok Wong, Zhiyu Dai, Xiao Yu Tian","doi":"10.1161/CIRCRESAHA.124.325855","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Vascular hyperpermeability is one of the hallmarks of acute lung injury, contributing to excessive inflammation and respiratory failure. The PPARδ (peroxisome proliferator-activated receptor delta) is an anti-inflammatory transcription factor, although its role in endothelial barrier function remains unclear. Here, we studied the essential role of PPARδ in maintaining vascular endothelial barrier integrity during lung inflammation and investigated the underlying mechanisms.</p><p><strong>Methods: </strong>Endothelial cell (EC)-selective PPARδ knockout mice (Ppard<sup>EC-KO</sup>) and littermate control mice (Ppard<sup>EC-WT</sup>) received lipopolysaccharide injection to induce acute lung injury. Lung inflammation, pulmonary vascular leakage, and mouse mortality were monitored. Single-cell RNA sequencing was performed on sorted mouse lung ECs.</p><p><strong>Results: </strong>Ppard<sup>EC-KO</sup> mice exhibited aggravated lung inflammation, characterized by increased leukocyte infiltration, elevated production of proinflammatory cytokines, and higher mortality rates. The enhanced inflammatory responses were associated with increased protein leakage, interstitial edema, and impaired endothelial barrier structure, leading to vascular hyperpermeability in Ppard<sup>EC-KO</sup> mice. Mechanistically, with single-cell RNA sequencing, we identified the emergence of an interferon-activated capillary EC population marked by CXCL10 (C-X-C motif chemokine 10) expression following lipopolysaccharide challenge. PPARδ silencing significantly increased CXCL10 expression in ECs through activating STAT1 (Signal transducer and activator of transcription 1). Notably, CXCL10 treatment induced degradation of tight junction proteins ZO-1 (zonula occludens protein 1) and claudin-5 through the ubiquitin-proteasome system, disrupting membrane junction continuity in ECs. Administration of anti-CXCL10 antibody or CXCL10 receptor antagonist AMG487 suppressed both lipopolysaccharide-induced lung inflammation and vascular leakage in Ppard<sup>EC-KO</sup> mice.</p><p><strong>Conclusions: </strong>These results highlighted a novel anti-inflammatory role of PPARδ in ECs by suppressing CXCL10-mediating vascular hyperpermeability. Targeting the CXCL10 signaling shows therapeutic potential against vascular injury in acute lung injury.</p>","PeriodicalId":10147,"journal":{"name":"Circulation research","volume":" ","pages":"735-751"},"PeriodicalIF":16.5000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Circulation research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1161/CIRCRESAHA.124.325855","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/25 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Vascular hyperpermeability is one of the hallmarks of acute lung injury, contributing to excessive inflammation and respiratory failure. The PPARδ (peroxisome proliferator-activated receptor delta) is an anti-inflammatory transcription factor, although its role in endothelial barrier function remains unclear. Here, we studied the essential role of PPARδ in maintaining vascular endothelial barrier integrity during lung inflammation and investigated the underlying mechanisms.

Methods: Endothelial cell (EC)-selective PPARδ knockout mice (PpardEC-KO) and littermate control mice (PpardEC-WT) received lipopolysaccharide injection to induce acute lung injury. Lung inflammation, pulmonary vascular leakage, and mouse mortality were monitored. Single-cell RNA sequencing was performed on sorted mouse lung ECs.

Results: PpardEC-KO mice exhibited aggravated lung inflammation, characterized by increased leukocyte infiltration, elevated production of proinflammatory cytokines, and higher mortality rates. The enhanced inflammatory responses were associated with increased protein leakage, interstitial edema, and impaired endothelial barrier structure, leading to vascular hyperpermeability in PpardEC-KO mice. Mechanistically, with single-cell RNA sequencing, we identified the emergence of an interferon-activated capillary EC population marked by CXCL10 (C-X-C motif chemokine 10) expression following lipopolysaccharide challenge. PPARδ silencing significantly increased CXCL10 expression in ECs through activating STAT1 (Signal transducer and activator of transcription 1). Notably, CXCL10 treatment induced degradation of tight junction proteins ZO-1 (zonula occludens protein 1) and claudin-5 through the ubiquitin-proteasome system, disrupting membrane junction continuity in ECs. Administration of anti-CXCL10 antibody or CXCL10 receptor antagonist AMG487 suppressed both lipopolysaccharide-induced lung inflammation and vascular leakage in PpardEC-KO mice.

Conclusions: These results highlighted a novel anti-inflammatory role of PPARδ in ECs by suppressing CXCL10-mediating vascular hyperpermeability. Targeting the CXCL10 signaling shows therapeutic potential against vascular injury in acute lung injury.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Circulation research
Circulation research 医学-外周血管病
CiteScore
29.60
自引率
2.00%
发文量
535
审稿时长
3-6 weeks
期刊介绍: Circulation Research is a peer-reviewed journal that serves as a forum for the highest quality research in basic cardiovascular biology. The journal publishes studies that utilize state-of-the-art approaches to investigate mechanisms of human disease, as well as translational and clinical research that provide fundamental insights into the basis of disease and the mechanism of therapies. Circulation Research has a broad audience that includes clinical and academic cardiologists, basic cardiovascular scientists, physiologists, cellular and molecular biologists, and cardiovascular pharmacologists. The journal aims to advance the understanding of cardiovascular biology and disease by disseminating cutting-edge research to these diverse communities. In terms of indexing, Circulation Research is included in several prominent scientific databases, including BIOSIS, CAB Abstracts, Chemical Abstracts, Current Contents, EMBASE, and MEDLINE. This ensures that the journal's articles are easily discoverable and accessible to researchers in the field. Overall, Circulation Research is a reputable publication that attracts high-quality research and provides a platform for the dissemination of important findings in basic cardiovascular biology and its translational and clinical applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信