Xueli Man, Ting Lin, Zhixuan Xie, Juan Jin, Qiang He
{"title":"Beneficial effects of cell-derived exosomes on diabetic nephropathy: a systematic review and meta-analysis of preclinical evidence.","authors":"Xueli Man, Ting Lin, Zhixuan Xie, Juan Jin, Qiang He","doi":"10.1007/s00592-025-02473-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>Recent studies indicate that cell-derived exosomes are effective in treating diabetic renal injury, though their precise mechanisms remain unclear. This meta-analysis evaluates the therapeutic efficacy of exosomes in diabetic nephropathy.</p><p><strong>Methods: </strong>In addition to reviewing references and consulting experts, we systematically searched PubMed, Cochrane Library, EMBASE, and Web of Science for studies on exosome therapy for diabetic nephropathy. Seven outcome measures were selected to evaluate efficacy: blood glucose [(fasting blood glucose (FBG) and random blood glucose (RBG)], renal function parameters [serum creatinine (SCR), blood urea nitrogen (BUN), 24-hour urinary protein (24 h UP) and albumin-to-creatinine ratio (UACR)], and inflammatory factors. Study quality was assessed using the SYRCLE risk of bias tool, and data were analyzed using RevMan (version 5.3) software.</p><p><strong>Results: </strong>We included 17 studies involving 288 animals, with follow-up durations ranging from 2 to 14 weeks. Pooled analysis demonstrated that exosome treatment significantly improved GLU (FBG: SMD - 1.39, 95% CI -2.70 to -0.08, P = 0.04; RBG: SMD - 1.29, 95% CI -2.25 to -0.34, P < 0.008), SCR (SMD - 1.45, 95% CI -2.14 to -0.76, P < 0.0001), BUN (SMD - 2.06, 95% CI -3.01 to -1.11, P < 0.0001), 24 UP (SMD - 2.88, 95% CI -3.97 to -1.78, P < 0.00001), and UACR (SMD - 2.00, 95% CI -3.15 to -0.85, P = 0.0007) compared to the diabetic model group. Qualitative analysis revealed that exosomes increased anti-inflammatory factors while reducing pro-inflammatory factors (P < 0.05). No adverse effects of exosomes were reported in any of the included studies.</p><p><strong>Conclusions: </strong>Current evidence indicates that exosomes attenuate diabetic nephropathy progression through anti-inflammatory, anti-fibrotic, anti-apoptotic, and autophagy-inducing mechanisms. To demonstrate the most efficient exosomes and therapeutic parameters for the treatment of diabetic nephropathy, future studies should conduct sizable, randomized, double-blind trials with high-quality, long-term follow-ups.</p>","PeriodicalId":6921,"journal":{"name":"Acta Diabetologica","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Diabetologica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00592-025-02473-8","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Aims: Recent studies indicate that cell-derived exosomes are effective in treating diabetic renal injury, though their precise mechanisms remain unclear. This meta-analysis evaluates the therapeutic efficacy of exosomes in diabetic nephropathy.
Methods: In addition to reviewing references and consulting experts, we systematically searched PubMed, Cochrane Library, EMBASE, and Web of Science for studies on exosome therapy for diabetic nephropathy. Seven outcome measures were selected to evaluate efficacy: blood glucose [(fasting blood glucose (FBG) and random blood glucose (RBG)], renal function parameters [serum creatinine (SCR), blood urea nitrogen (BUN), 24-hour urinary protein (24 h UP) and albumin-to-creatinine ratio (UACR)], and inflammatory factors. Study quality was assessed using the SYRCLE risk of bias tool, and data were analyzed using RevMan (version 5.3) software.
Results: We included 17 studies involving 288 animals, with follow-up durations ranging from 2 to 14 weeks. Pooled analysis demonstrated that exosome treatment significantly improved GLU (FBG: SMD - 1.39, 95% CI -2.70 to -0.08, P = 0.04; RBG: SMD - 1.29, 95% CI -2.25 to -0.34, P < 0.008), SCR (SMD - 1.45, 95% CI -2.14 to -0.76, P < 0.0001), BUN (SMD - 2.06, 95% CI -3.01 to -1.11, P < 0.0001), 24 UP (SMD - 2.88, 95% CI -3.97 to -1.78, P < 0.00001), and UACR (SMD - 2.00, 95% CI -3.15 to -0.85, P = 0.0007) compared to the diabetic model group. Qualitative analysis revealed that exosomes increased anti-inflammatory factors while reducing pro-inflammatory factors (P < 0.05). No adverse effects of exosomes were reported in any of the included studies.
Conclusions: Current evidence indicates that exosomes attenuate diabetic nephropathy progression through anti-inflammatory, anti-fibrotic, anti-apoptotic, and autophagy-inducing mechanisms. To demonstrate the most efficient exosomes and therapeutic parameters for the treatment of diabetic nephropathy, future studies should conduct sizable, randomized, double-blind trials with high-quality, long-term follow-ups.
期刊介绍:
Acta Diabetologica is a journal that publishes reports of experimental and clinical research on diabetes mellitus and related metabolic diseases. Original contributions on biochemical, physiological, pathophysiological and clinical aspects of research on diabetes and metabolic diseases are welcome. Reports are published in the form of original articles, short communications and letters to the editor. Invited reviews and editorials are also published. A Methodology forum, which publishes contributions on methodological aspects of diabetes in vivo and in vitro, is also available. The Editor-in-chief will be pleased to consider articles describing new techniques (e.g., new transplantation methods, metabolic models), of innovative importance in the field of diabetes/metabolism. Finally, workshop reports are also welcome in Acta Diabetologica.