SeroWare: An Open-Source Software Suite for Voltammetry Data Acquisition and Analysis.

IF 4.1 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Cameron S Movassaghi, Rahul Iyer, Maya E Curry, Mila E Wesely, Miguel Alcañiz Fillol, Anne M Andrews
{"title":"SeroWare: An Open-Source Software Suite for Voltammetry Data Acquisition and Analysis.","authors":"Cameron S Movassaghi, Rahul Iyer, Maya E Curry, Mila E Wesely, Miguel Alcañiz Fillol, Anne M Andrews","doi":"10.1021/acschemneuro.4c00799","DOIUrl":null,"url":null,"abstract":"<p><p>Voltammetry is widely used for fast, data-dense measurements of redox-active analytes in versatile environments, including the brain. Voltammetry requires minimal hardware beyond a potentiostat, a front-end amplifier, and a computer. Nonetheless, researchers must often develop or modify software packages for application-specific uses. Of the voltammetry software available, significant issues exist with source code inaccessible for updating or customization, nonconfigurable data processing procedures, and hardware incompatibilities. These limitations, coupled with the recent proliferation of waveform types and increased demands for high bandwidth data acquisition and efficient data processing, create the need for sophisticated, powerful, and flexible voltammetry software. We report developing \"SeroWare\", an open-source, end-to-end voltammetry acquisition and analysis software package designed to handle a wide variety of use cases encountered by voltammetry users. Although inspired by neurochemical analyses, this software is flexible, customizable, and compatible with open-source toolkits. The modular software architecture enables users to generate, acquire, and analyze voltammetry data of different types, ranging from pulse and sweep waveforms to fast and slow scans via easily accessible and exportable file formats. Template code is provided for communicating with a variety of standard external devices. We report several novel features for waveform applications and data flow. In-depth documentation in a User Guide and video tutorials are provided to enable new research directions, particularly regarding shareability and lowering the barriers to entry for new investigators.</p>","PeriodicalId":13,"journal":{"name":"ACS Chemical Neuroscience","volume":" ","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acschemneuro.4c00799","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Voltammetry is widely used for fast, data-dense measurements of redox-active analytes in versatile environments, including the brain. Voltammetry requires minimal hardware beyond a potentiostat, a front-end amplifier, and a computer. Nonetheless, researchers must often develop or modify software packages for application-specific uses. Of the voltammetry software available, significant issues exist with source code inaccessible for updating or customization, nonconfigurable data processing procedures, and hardware incompatibilities. These limitations, coupled with the recent proliferation of waveform types and increased demands for high bandwidth data acquisition and efficient data processing, create the need for sophisticated, powerful, and flexible voltammetry software. We report developing "SeroWare", an open-source, end-to-end voltammetry acquisition and analysis software package designed to handle a wide variety of use cases encountered by voltammetry users. Although inspired by neurochemical analyses, this software is flexible, customizable, and compatible with open-source toolkits. The modular software architecture enables users to generate, acquire, and analyze voltammetry data of different types, ranging from pulse and sweep waveforms to fast and slow scans via easily accessible and exportable file formats. Template code is provided for communicating with a variety of standard external devices. We report several novel features for waveform applications and data flow. In-depth documentation in a User Guide and video tutorials are provided to enable new research directions, particularly regarding shareability and lowering the barriers to entry for new investigators.

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Chemical Neuroscience
ACS Chemical Neuroscience BIOCHEMISTRY & MOLECULAR BIOLOGY-CHEMISTRY, MEDICINAL
CiteScore
9.20
自引率
4.00%
发文量
323
审稿时长
1 months
期刊介绍: ACS Chemical Neuroscience publishes high-quality research articles and reviews that showcase chemical, quantitative biological, biophysical and bioengineering approaches to the understanding of the nervous system and to the development of new treatments for neurological disorders. Research in the journal focuses on aspects of chemical neurobiology and bio-neurochemistry such as the following: Neurotransmitters and receptors Neuropharmaceuticals and therapeutics Neural development—Plasticity, and degeneration Chemical, physical, and computational methods in neuroscience Neuronal diseases—basis, detection, and treatment Mechanism of aging, learning, memory and behavior Pain and sensory processing Neurotoxins Neuroscience-inspired bioengineering Development of methods in chemical neurobiology Neuroimaging agents and technologies Animal models for central nervous system diseases Behavioral research
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信