Electric charge and salting in/out effects on glucagon's dipole moments and polarizabilities using the GruPol database.

IF 1.3 3区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY
Raphael F Ligorio, Rasmus H M Gehle, Leonardo H R Dos Santos, Anna Krawczuk
{"title":"Electric charge and salting in/out effects on glucagon's dipole moments and polarizabilities using the GruPol database.","authors":"Raphael F Ligorio, Rasmus H M Gehle, Leonardo H R Dos Santos, Anna Krawczuk","doi":"10.1107/S2052520625001088","DOIUrl":null,"url":null,"abstract":"<p><p>This work demonstrates the use of the GruPol database to predict the functional group dipole moments and polarizabilities of glucagon in the presence of NaCl, simulating an electric charge distribution on the protein's backbone. A new feature of the database allows for the inclusion of ions on the protein backbone, effectively simulating a protein salt and predicting the impact on electrical properties. Glucagon was selected as a proof-of-concept molecule due to its relatively small chain, which enabled benchmarking against quantum mechanical calculations. Firstly, we simulated 70 different ionic configurations, varying the number of Na<sup>+</sup> and Cl<sup>-</sup> ions from zero to four NaCl moieties. Additionally, we investigated the effects of solvation under two distinct conditions: one involving just the peptide and water, and the other also including NaCl at a concentration of approximately 4.2 mol L<sup>-1</sup>. Regarding the ab initio results, GruPol showed good accuracy, with an angular direction error of around 10° and a 15% difference in the magnitude of the dipole moments. However, the error in polarizability values was higher, most likely due to the lack of an augmented basis set in the ab initio quantum calculations (M06-HF/cc-pVDZ). The database entries were generated using the same functional along with the aug-cc-pVDZ basis set. In solution, a high ionic concentration lowered the overall dipole moment, while the main components of polarizability increased.</p>","PeriodicalId":7320,"journal":{"name":"Acta crystallographica Section B, Structural science, crystal engineering and materials","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta crystallographica Section B, Structural science, crystal engineering and materials","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1107/S2052520625001088","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This work demonstrates the use of the GruPol database to predict the functional group dipole moments and polarizabilities of glucagon in the presence of NaCl, simulating an electric charge distribution on the protein's backbone. A new feature of the database allows for the inclusion of ions on the protein backbone, effectively simulating a protein salt and predicting the impact on electrical properties. Glucagon was selected as a proof-of-concept molecule due to its relatively small chain, which enabled benchmarking against quantum mechanical calculations. Firstly, we simulated 70 different ionic configurations, varying the number of Na+ and Cl- ions from zero to four NaCl moieties. Additionally, we investigated the effects of solvation under two distinct conditions: one involving just the peptide and water, and the other also including NaCl at a concentration of approximately 4.2 mol L-1. Regarding the ab initio results, GruPol showed good accuracy, with an angular direction error of around 10° and a 15% difference in the magnitude of the dipole moments. However, the error in polarizability values was higher, most likely due to the lack of an augmented basis set in the ab initio quantum calculations (M06-HF/cc-pVDZ). The database entries were generated using the same functional along with the aug-cc-pVDZ basis set. In solution, a high ionic concentration lowered the overall dipole moment, while the main components of polarizability increased.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta crystallographica Section B, Structural science, crystal engineering and materials
Acta crystallographica Section B, Structural science, crystal engineering and materials CHEMISTRY, MULTIDISCIPLINARYCRYSTALLOGRAPH-CRYSTALLOGRAPHY
CiteScore
3.60
自引率
5.30%
发文量
0
期刊介绍: Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials publishes scientific articles related to the structural science of compounds and materials in the widest sense. Knowledge of the arrangements of atoms, including their temporal variations and dependencies on temperature and pressure, is often the key to understanding physical and chemical phenomena and is crucial for the design of new materials and supramolecular devices. Acta Crystallographica B is the forum for the publication of such contributions. Scientific developments based on experimental studies as well as those based on theoretical approaches, including crystal-structure prediction, structure-property relations and the use of databases of crystal structures, are published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信