{"title":"Visualization of Efavirenz-Induced Lipid Alterations in the Mouse Brain Using MALDI Mass Spectrometry Imaging","authors":"Nav Raj Phulara, Herana Kamal Seneviratne","doi":"10.1002/cpz1.70108","DOIUrl":null,"url":null,"abstract":"<p>This article highlights experimental procedures and troubleshooting tips for the utilization of matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) methods for detecting and visualizing lipid alterations in the mouse brain tissue in response to efavirenz (EFV) treatment. To investigate drug-induced adverse effects, it is becoming increasingly important to understand the spatial alterations of lipid molecules in the target organs. EFV is a non-nucleoside reverse transcriptase inhibitor commonly used for HIV treatment in combination with other antiretrovirals. Importantly, EFV is a drug that is included in the World Health Organization's list of essential medications. However, EFV is known to be associated with neurotoxicity. To date, the mechanisms underlying EFV-induced neurotoxicity have not been fully elucidated. Therefore, it is important to gain understanding of the effect of EFV on the brain. It is known that the brain is composed of different neuroanatomical regions that are abundant in lipids. Described here is the use of a chemical imaging strategy, MALDI MSI, to detect, identify, and visualize the spatial localization of several lipid species across the brain tissue sections along with their alterations in response to EFV treatment. The set of protocols consists of three major parts: lipid detection, identification, and tissue imaging. Lipid detection includes testing different chemical matrices and how they facilitate the detection of analytes, which is then followed by identification. Collision-induced dissociation is employed to verify the identity of the lipid molecules. Lastly, tissue imaging experiments are performed to generate the spatial localization profiles of the lipids. The protocols described in this article can be employed to spatially visualize alterations in the lipid molecules in response to drug treatment. © 2025 Wiley Periodicals LLC.</p><p><b>Basic Protocol 1</b>: MALDI mass spectrometry (MALDI MS) profiling experiments for detection of lipids</p><p><b>Basic Protocol 2</b>: MALDI MS imaging of lipid molecules in mouse brain tissues</p><p><b>Basic Protocol 3</b>: MALDI MS data processing and analysis</p>","PeriodicalId":93970,"journal":{"name":"Current protocols","volume":"5 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current protocols","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpz1.70108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This article highlights experimental procedures and troubleshooting tips for the utilization of matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) methods for detecting and visualizing lipid alterations in the mouse brain tissue in response to efavirenz (EFV) treatment. To investigate drug-induced adverse effects, it is becoming increasingly important to understand the spatial alterations of lipid molecules in the target organs. EFV is a non-nucleoside reverse transcriptase inhibitor commonly used for HIV treatment in combination with other antiretrovirals. Importantly, EFV is a drug that is included in the World Health Organization's list of essential medications. However, EFV is known to be associated with neurotoxicity. To date, the mechanisms underlying EFV-induced neurotoxicity have not been fully elucidated. Therefore, it is important to gain understanding of the effect of EFV on the brain. It is known that the brain is composed of different neuroanatomical regions that are abundant in lipids. Described here is the use of a chemical imaging strategy, MALDI MSI, to detect, identify, and visualize the spatial localization of several lipid species across the brain tissue sections along with their alterations in response to EFV treatment. The set of protocols consists of three major parts: lipid detection, identification, and tissue imaging. Lipid detection includes testing different chemical matrices and how they facilitate the detection of analytes, which is then followed by identification. Collision-induced dissociation is employed to verify the identity of the lipid molecules. Lastly, tissue imaging experiments are performed to generate the spatial localization profiles of the lipids. The protocols described in this article can be employed to spatially visualize alterations in the lipid molecules in response to drug treatment. © 2025 Wiley Periodicals LLC.
Basic Protocol 1: MALDI mass spectrometry (MALDI MS) profiling experiments for detection of lipids
Basic Protocol 2: MALDI MS imaging of lipid molecules in mouse brain tissues
Basic Protocol 3: MALDI MS data processing and analysis