Protective Effects of Galangin Against Cyclophosphamide-Induced Cardiotoxicity via Suppressing NF-κB and Improving Mitochondrial Biogenesis

IF 3.2 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Manar Ali Elsayed, Doaa A. Radwan, Hanem Mohamed Rabah, Hemat El-Sayed El-Horany, Nahla Anas Nasef, Rehab E. Abo El Gheit, Marwa N. Emam, Rasha Osama Elesawy, Walaa Elseady, Alia Mahmoud
{"title":"Protective Effects of Galangin Against Cyclophosphamide-Induced Cardiotoxicity via Suppressing NF-κB and Improving Mitochondrial Biogenesis","authors":"Manar Ali Elsayed,&nbsp;Doaa A. Radwan,&nbsp;Hanem Mohamed Rabah,&nbsp;Hemat El-Sayed El-Horany,&nbsp;Nahla Anas Nasef,&nbsp;Rehab E. Abo El Gheit,&nbsp;Marwa N. Emam,&nbsp;Rasha Osama Elesawy,&nbsp;Walaa Elseady,&nbsp;Alia Mahmoud","doi":"10.1002/jbt.70193","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Cyclophosphamide (CYP) is an effective chemotherapeutic and immunosuppressive agent; however, its clinical application is limited by a variety of toxic side effects. Mitochondrial dysfunction has been associated with the pathogenesis of chemotherapy-induced cardiotoxicity. This work aimed to evaluate the possible protective effect of galangin (Gal) on CYP-induced cardiotoxicity, pointing to its ability to promote mitochondrial biogenesis. Thirty two male rats were allocated equally into four groups: control; Gal-treated; CYP-treated; and Gal + CYP-treated groups. Markers of cardiac injury, oxidative/antioxidant status, inflammation, apoptosis, and mitochondrial function were assessed in addition to histopathological and electrocardiographic (ECG) evaluation. The current results revealed that Gal treatment significantly attenuated the cardiac injury and retrieved the alterations in cardiac histopathology and ECG changes. Also, it restored redox balance, as evidenced by the alleviation of malondialdehyde (MDA) levels and increased glutathione peroxidase (GPx) activity. Gal activated the sirtuin (SIRT) 1/nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated signaling pathway, as indicated by upregulation of SIRT1, Nrf2, SIRT3, and mitochondrial transcription factor (TFAM), in addition to increased levels of superoxide dismutase 2 (SOD)2 and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), together with increased activity of citrate synthase (CS), pointing to improved mitochondrial function. It ameliorated the inflammation and apoptosis-associated markers supported by biochemical and immunostaining data. Our study provided novel insights elucidating the mitigative potential of against CYP-induced cardiac oxidative damage, inflammation, apoptosis, and mitochondrial dysfunction by upregulating the SIRT1/Nrf2/SIRT3/PGC-1α/TFAM survival pathway.</p></div>","PeriodicalId":15151,"journal":{"name":"Journal of Biochemical and Molecular Toxicology","volume":"39 3","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biochemical and Molecular Toxicology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbt.70193","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Cyclophosphamide (CYP) is an effective chemotherapeutic and immunosuppressive agent; however, its clinical application is limited by a variety of toxic side effects. Mitochondrial dysfunction has been associated with the pathogenesis of chemotherapy-induced cardiotoxicity. This work aimed to evaluate the possible protective effect of galangin (Gal) on CYP-induced cardiotoxicity, pointing to its ability to promote mitochondrial biogenesis. Thirty two male rats were allocated equally into four groups: control; Gal-treated; CYP-treated; and Gal + CYP-treated groups. Markers of cardiac injury, oxidative/antioxidant status, inflammation, apoptosis, and mitochondrial function were assessed in addition to histopathological and electrocardiographic (ECG) evaluation. The current results revealed that Gal treatment significantly attenuated the cardiac injury and retrieved the alterations in cardiac histopathology and ECG changes. Also, it restored redox balance, as evidenced by the alleviation of malondialdehyde (MDA) levels and increased glutathione peroxidase (GPx) activity. Gal activated the sirtuin (SIRT) 1/nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated signaling pathway, as indicated by upregulation of SIRT1, Nrf2, SIRT3, and mitochondrial transcription factor (TFAM), in addition to increased levels of superoxide dismutase 2 (SOD)2 and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), together with increased activity of citrate synthase (CS), pointing to improved mitochondrial function. It ameliorated the inflammation and apoptosis-associated markers supported by biochemical and immunostaining data. Our study provided novel insights elucidating the mitigative potential of against CYP-induced cardiac oxidative damage, inflammation, apoptosis, and mitochondrial dysfunction by upregulating the SIRT1/Nrf2/SIRT3/PGC-1α/TFAM survival pathway.

高良姜素通过抑制 NF-κB 和改善线粒体生物生成对环磷酰胺诱导的心脏毒性具有保护作用
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.80
自引率
2.80%
发文量
277
审稿时长
6-12 weeks
期刊介绍: The Journal of Biochemical and Molecular Toxicology is an international journal that contains original research papers, rapid communications, mini-reviews, and book reviews, all focusing on the molecular mechanisms of action and detoxication of exogenous and endogenous chemicals and toxic agents. The scope includes effects on the organism at all stages of development, on organ systems, tissues, and cells as well as on enzymes, receptors, hormones, and genes. The biochemical and molecular aspects of uptake, transport, storage, excretion, lactivation and detoxication of drugs, agricultural, industrial and environmental chemicals, natural products and food additives are all subjects suitable for publication. Of particular interest are aspects of molecular biology related to biochemical toxicology. These include studies of the expression of genes related to detoxication and activation enzymes, toxicants with modes of action involving effects on nucleic acids, gene expression and protein synthesis, and the toxicity of products derived from biotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信