Fault Classification and Detection in Transmission Lines by Hybrid Algorithm Associated Support Vector Machine

IF 2.5 4区 计算机科学 Q3 TELECOMMUNICATIONS
V. Rajesh Kumar, P. Aruna Jeyanthy
{"title":"Fault Classification and Detection in Transmission Lines by Hybrid Algorithm Associated Support Vector Machine","authors":"V. Rajesh Kumar,&nbsp;P. Aruna Jeyanthy","doi":"10.1002/ett.70034","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This work proposes a unique machine-learning method based on optimization for the categorization and identification of defects in transmission lines. The novel hybrid optimization algorithm termed as the Chimpanzee inherited Squirrel search strategy (CI-SSS) optimization technique is used in the proposed approach. The proposed CI-SSS algorithm inherits the concept of chimps and squirrels in attaining their food with remarkable intelligence. The proposed approach involves optimizing the SVM's parameters to improve the proposed model's accuracy in identifying and classifying transmission line faults. The accuracy and error metrics of the suggested method is studied. The accuracy CI-SSS is 98.82%, which is 11.35%, 5.41%, 0.84%, and 9.55% higher than methods, like GWO, DA, SSA, and CH, correspondingly. Similarly, the measure of MAE using the proposed CI-SSS-based SVM model is 0.0104, which is 84.5%, 87.7%, 85.73%, and 62.85% finer than the traditional methods, namely GWO, DA, SSA, and CH, respectively. Hence, the suggested strategy offers improved performance in classifying and detecting transmission line faults.</p>\n </div>","PeriodicalId":23282,"journal":{"name":"Transactions on Emerging Telecommunications Technologies","volume":"36 3","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions on Emerging Telecommunications Technologies","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ett.70034","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

This work proposes a unique machine-learning method based on optimization for the categorization and identification of defects in transmission lines. The novel hybrid optimization algorithm termed as the Chimpanzee inherited Squirrel search strategy (CI-SSS) optimization technique is used in the proposed approach. The proposed CI-SSS algorithm inherits the concept of chimps and squirrels in attaining their food with remarkable intelligence. The proposed approach involves optimizing the SVM's parameters to improve the proposed model's accuracy in identifying and classifying transmission line faults. The accuracy and error metrics of the suggested method is studied. The accuracy CI-SSS is 98.82%, which is 11.35%, 5.41%, 0.84%, and 9.55% higher than methods, like GWO, DA, SSA, and CH, correspondingly. Similarly, the measure of MAE using the proposed CI-SSS-based SVM model is 0.0104, which is 84.5%, 87.7%, 85.73%, and 62.85% finer than the traditional methods, namely GWO, DA, SSA, and CH, respectively. Hence, the suggested strategy offers improved performance in classifying and detecting transmission line faults.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.90
自引率
13.90%
发文量
249
期刊介绍: ransactions on Emerging Telecommunications Technologies (ETT), formerly known as European Transactions on Telecommunications (ETT), has the following aims: - to attract cutting-edge publications from leading researchers and research groups around the world - to become a highly cited source of timely research findings in emerging fields of telecommunications - to limit revision and publication cycles to a few months and thus significantly increase attractiveness to publish - to become the leading journal for publishing the latest developments in telecommunications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信