{"title":"Computational studies on the clusters of HONO•(H2O)n(n = 1–7): structures and enthalpy of formation","authors":"Jiadong Bai, Jia Cao","doi":"10.1007/s00894-025-06324-9","DOIUrl":null,"url":null,"abstract":"<div><h3>Context</h3><p>Nitrous acid (HONO) is often associated with many air pollution events, such as the ozone hole, acid rain, and human health. Herein, we performed the theoretical studies on the structures and enthalpy of formation for the hydrated clusters HONO∙(H<sub>2</sub>O)<sub><i>n</i></sub>(<i>n</i> = 1–7). Two different isomers of HONO including <i>cis</i>-HONO and <i>trans</i>-HONO were studied. Minima structures of <i>trans</i>-HONO∙(H<sub>2</sub>O)<sub><i>n</i></sub>(<i>n</i> = 1–7) and <i>cis</i>-HONO∙(H<sub>2</sub>O)<sub><i>n</i></sub>(<i>n</i> = 1–7) clusters containing forty-eight and twenty-one were found, respectively. The hydrogen-bonded interactions between HONO and water molecules in HONO∙(H<sub>2</sub>O)<sub><i>n</i></sub>(<i>n</i> = 1–7) clusters were analyzed. Enthalpies of the formation of the most stable isomers of <i>trans</i>-HONO∙(H<sub>2</sub>O)<sub><i>n</i></sub>(<i>n</i> = 1–7) and <i>cis</i>-HONO∙(H<sub>2</sub>O)<sub><i>n</i></sub>(<i>n</i> = 1–7) clusters are predicted theoretically. These results can provide a new understanding of the atmospheric circulation of HONO.</p><h3>Methods</h3><p>Geometric structures and vibrational frequencies of the HONO∙(H<sub>2</sub>O)<sub><i>n</i></sub>(<i>n</i> = 1–7) clusters were investigated by using the QCISD(T)/6–311 + G(3df,2p)//M06-2X/6–311 + G(3df,2p) method. Enthalpies of formation of the global minimal isomers of the HONO∙(H<sub>2</sub>O)<sub><i>n</i></sub>(<i>n</i> = 1–7) clusters were calculated at the CBS-QB3 level of theory. Atoms in molecules (AIM) theory was applied to the analysis of hydrogen-bonded interactions among the HONO∙(H<sub>2</sub>O)<sub><i>n</i></sub>(<i>n</i> = 1–7) clusters.</p></div>","PeriodicalId":651,"journal":{"name":"Journal of Molecular Modeling","volume":"31 3","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Modeling","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00894-025-06324-9","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Context
Nitrous acid (HONO) is often associated with many air pollution events, such as the ozone hole, acid rain, and human health. Herein, we performed the theoretical studies on the structures and enthalpy of formation for the hydrated clusters HONO∙(H2O)n(n = 1–7). Two different isomers of HONO including cis-HONO and trans-HONO were studied. Minima structures of trans-HONO∙(H2O)n(n = 1–7) and cis-HONO∙(H2O)n(n = 1–7) clusters containing forty-eight and twenty-one were found, respectively. The hydrogen-bonded interactions between HONO and water molecules in HONO∙(H2O)n(n = 1–7) clusters were analyzed. Enthalpies of the formation of the most stable isomers of trans-HONO∙(H2O)n(n = 1–7) and cis-HONO∙(H2O)n(n = 1–7) clusters are predicted theoretically. These results can provide a new understanding of the atmospheric circulation of HONO.
Methods
Geometric structures and vibrational frequencies of the HONO∙(H2O)n(n = 1–7) clusters were investigated by using the QCISD(T)/6–311 + G(3df,2p)//M06-2X/6–311 + G(3df,2p) method. Enthalpies of formation of the global minimal isomers of the HONO∙(H2O)n(n = 1–7) clusters were calculated at the CBS-QB3 level of theory. Atoms in molecules (AIM) theory was applied to the analysis of hydrogen-bonded interactions among the HONO∙(H2O)n(n = 1–7) clusters.
期刊介绍:
The Journal of Molecular Modeling focuses on "hardcore" modeling, publishing high-quality research and reports. Founded in 1995 as a purely electronic journal, it has adapted its format to include a full-color print edition, and adjusted its aims and scope fit the fast-changing field of molecular modeling, with a particular focus on three-dimensional modeling.
Today, the journal covers all aspects of molecular modeling including life science modeling; materials modeling; new methods; and computational chemistry.
Topics include computer-aided molecular design; rational drug design, de novo ligand design, receptor modeling and docking; cheminformatics, data analysis, visualization and mining; computational medicinal chemistry; homology modeling; simulation of peptides, DNA and other biopolymers; quantitative structure-activity relationships (QSAR) and ADME-modeling; modeling of biological reaction mechanisms; and combined experimental and computational studies in which calculations play a major role.