Research on building energy consumption prediction algorithm based on customized deep learning model

Q2 Energy
Zheng Liang, Junjie Chen
{"title":"Research on building energy consumption prediction algorithm based on customized deep learning model","authors":"Zheng Liang,&nbsp;Junjie Chen","doi":"10.1186/s42162-025-00483-y","DOIUrl":null,"url":null,"abstract":"<div><p>Forecasting energy usage in buildings is essential for implementing energy saving measures. Precisely forecasting building energy use is difficult due to uncertainty and noise disruption.To achieve enhanced accuracy in predicting energy use in buildings, a deep learning approach is proposed. This paper proposes a customized convolutional neural network with Q-Learning (CCNN-QL) based reinforcement learning algorithm for predicting energy consumption in building.The suggested CCNN-QL model offers an auto-learning feature that predicts building energy consumption through an automated method, continually improving its predictive accuracy.To assess its performance, various building types were selected to study the factors influencing excessive energy consumption, and data were collected from multiple Chinese cities. The suggested model’s performance has been assessed using evaluation metrics, resulting in a low Mean Absolute Error (MAE) and Root Mean Square Error (RMSE), indicating superior accuracy relative to comparable studies. Experimental results indicate that the suggested technique has superior predictive performance across several scenarios of building energy usage.</p></div>","PeriodicalId":538,"journal":{"name":"Energy Informatics","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://energyinformatics.springeropen.com/counter/pdf/10.1186/s42162-025-00483-y","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Informatics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s42162-025-00483-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

Abstract

Forecasting energy usage in buildings is essential for implementing energy saving measures. Precisely forecasting building energy use is difficult due to uncertainty and noise disruption.To achieve enhanced accuracy in predicting energy use in buildings, a deep learning approach is proposed. This paper proposes a customized convolutional neural network with Q-Learning (CCNN-QL) based reinforcement learning algorithm for predicting energy consumption in building.The suggested CCNN-QL model offers an auto-learning feature that predicts building energy consumption through an automated method, continually improving its predictive accuracy.To assess its performance, various building types were selected to study the factors influencing excessive energy consumption, and data were collected from multiple Chinese cities. The suggested model’s performance has been assessed using evaluation metrics, resulting in a low Mean Absolute Error (MAE) and Root Mean Square Error (RMSE), indicating superior accuracy relative to comparable studies. Experimental results indicate that the suggested technique has superior predictive performance across several scenarios of building energy usage.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy Informatics
Energy Informatics Computer Science-Computer Networks and Communications
CiteScore
5.50
自引率
0.00%
发文量
34
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信