Malformations of Core M3 on α-Dystroglycan Are the Leading Cause of Dystroglycanopathies

IF 2.8 4区 医学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Wessam Sharaf-Eldin
{"title":"Malformations of Core M3 on α-Dystroglycan Are the Leading Cause of Dystroglycanopathies","authors":"Wessam Sharaf-Eldin","doi":"10.1007/s12031-025-02320-z","DOIUrl":null,"url":null,"abstract":"<div><p>Dystroglycanopathies (DGPs) are a group of autosomal recessive neuromuscular diseases with significant clinical and genetic heterogeneity. They originate due to defects in the O-mannosyl glycosylation of α-dystroglycan (α-DG), a prominent linker between the intracellular cytoskeleton and the extracellular matrix (ECM). Fundamentally, such interactions are crucial for the integrity of muscle fibers and neuromuscular synapses, where their defects are mainly associated with muscle and brain dysfunction. To date, biallelic variants in 18 genes have been associated with DGPs, where the underlying cause is still undefined in a significant proportion of patients. Glycosylation of α-DG generates three core motifs where the core M3 is responsible for interaction with the basement membrane. Consistently, all gene defects that corrupt core M3 maturation have been identified as causes of DGPs. <i>POMGNT1</i> which stimulates the generation of core M1 is also associated with DGPs, as it plays a central role in core M3 processing. Other genes involved in the glycosylation of α-DG seem unrelated to DPGs. The current review illustrates the <i>O</i>-mannosylation pathway of α-DG highlighting the functional properties of related genes and their contribution to the progression of DPGs. Different classes of DPGs are also elaborated characterizing the clinical features of each distinct type and phenotypes associated with each single gene. Finally, current therapeutic approaches with favorable outcomes are addressed. Potential achievements of preclinical and clinical studies would introduce effective curative therapies for this group of disorders in the near future.</p></div>","PeriodicalId":652,"journal":{"name":"Journal of Molecular Neuroscience","volume":"75 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12031-025-02320-z.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s12031-025-02320-z","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Dystroglycanopathies (DGPs) are a group of autosomal recessive neuromuscular diseases with significant clinical and genetic heterogeneity. They originate due to defects in the O-mannosyl glycosylation of α-dystroglycan (α-DG), a prominent linker between the intracellular cytoskeleton and the extracellular matrix (ECM). Fundamentally, such interactions are crucial for the integrity of muscle fibers and neuromuscular synapses, where their defects are mainly associated with muscle and brain dysfunction. To date, biallelic variants in 18 genes have been associated with DGPs, where the underlying cause is still undefined in a significant proportion of patients. Glycosylation of α-DG generates three core motifs where the core M3 is responsible for interaction with the basement membrane. Consistently, all gene defects that corrupt core M3 maturation have been identified as causes of DGPs. POMGNT1 which stimulates the generation of core M1 is also associated with DGPs, as it plays a central role in core M3 processing. Other genes involved in the glycosylation of α-DG seem unrelated to DPGs. The current review illustrates the O-mannosylation pathway of α-DG highlighting the functional properties of related genes and their contribution to the progression of DPGs. Different classes of DPGs are also elaborated characterizing the clinical features of each distinct type and phenotypes associated with each single gene. Finally, current therapeutic approaches with favorable outcomes are addressed. Potential achievements of preclinical and clinical studies would introduce effective curative therapies for this group of disorders in the near future.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Molecular Neuroscience
Journal of Molecular Neuroscience 医学-神经科学
CiteScore
6.60
自引率
3.20%
发文量
142
审稿时长
1 months
期刊介绍: The Journal of Molecular Neuroscience is committed to the rapid publication of original findings that increase our understanding of the molecular structure, function, and development of the nervous system. The criteria for acceptance of manuscripts will be scientific excellence, originality, and relevance to the field of molecular neuroscience. Manuscripts with clinical relevance are especially encouraged since the journal seeks to provide a means for accelerating the progression of basic research findings toward clinical utilization. All experiments described in the Journal of Molecular Neuroscience that involve the use of animal or human subjects must have been approved by the appropriate institutional review committee and conform to accepted ethical standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信