Pathological Growth-Induced Helical Buckling of Blood Vessels

IF 1.8 3区 工程技术 Q2 ENGINEERING, MULTIDISCIPLINARY
Tian-Ze Gui, Sifan Yin, Bo Li, Xi-Qiao Feng
{"title":"Pathological Growth-Induced Helical Buckling of Blood Vessels","authors":"Tian-Ze Gui,&nbsp;Sifan Yin,&nbsp;Bo Li,&nbsp;Xi-Qiao Feng","doi":"10.1007/s10659-025-10121-z","DOIUrl":null,"url":null,"abstract":"<div><p>Helical vessels are widely observed in many pathological tissues, such as solid tumors, healing wounds, and varicose veins. However, it remains yet unclear how originally healthy and straight vessels transit to helical shapes. Here, we combine theoretical analysis and numerical simulations to investigate the helical buckling of growing vessels embedded in matrix. Based on linear stability analysis, we predict the critical growth strain that induces three-dimensional (3D) helical and two-dimensional (2D) sinusoidal buckling of vessels. This critical growth strain is regulated by the geometry of the vessel and the modulus ratio between the vessel and the matrix. A phase diagram is established to reveal the dependence of helical and sinusoidal modes on the vessel thickness and modulus ratio. Finite element simulations are performed to validate the theoretical prediction of the critical growth strain and further track the postbuckling evolution of growing vessels. The pitch of helix and the long and short axis of projected cross-section of vessels are characterized with increasing growth strain. Our findings elucidate the mechanism underlying abnormal formation of helical vessels, in consistency with the observations in tumors and varicose veins. This study could also inspire mechanics-based technologies for diseases diagnosis.</p></div>","PeriodicalId":624,"journal":{"name":"Journal of Elasticity","volume":"157 2","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Elasticity","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10659-025-10121-z","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Helical vessels are widely observed in many pathological tissues, such as solid tumors, healing wounds, and varicose veins. However, it remains yet unclear how originally healthy and straight vessels transit to helical shapes. Here, we combine theoretical analysis and numerical simulations to investigate the helical buckling of growing vessels embedded in matrix. Based on linear stability analysis, we predict the critical growth strain that induces three-dimensional (3D) helical and two-dimensional (2D) sinusoidal buckling of vessels. This critical growth strain is regulated by the geometry of the vessel and the modulus ratio between the vessel and the matrix. A phase diagram is established to reveal the dependence of helical and sinusoidal modes on the vessel thickness and modulus ratio. Finite element simulations are performed to validate the theoretical prediction of the critical growth strain and further track the postbuckling evolution of growing vessels. The pitch of helix and the long and short axis of projected cross-section of vessels are characterized with increasing growth strain. Our findings elucidate the mechanism underlying abnormal formation of helical vessels, in consistency with the observations in tumors and varicose veins. This study could also inspire mechanics-based technologies for diseases diagnosis.

病理性生长诱导的血管螺旋屈曲
螺旋状血管广泛存在于许多病理组织中,如实体瘤、愈合伤口和静脉曲张。然而,目前尚不清楚最初健康的直血管是如何转变成螺旋形状的。本文将理论分析与数值模拟相结合,研究了嵌入在基体中的生长血管的螺旋屈曲。基于线性稳定性分析,我们预测了引起血管三维(3D)螺旋和二维(2D)正弦屈曲的临界生长应变。这个临界生长应变是由容器的几何形状和容器与基体之间的模量比来调节的。建立了相图,揭示了螺旋模态和正弦模态与容器厚度和模量比的关系。为了验证临界生长应变的理论预测,进一步跟踪生长容器屈曲后的演化过程,进行了有限元模拟。螺旋螺距和血管投影截面长、短轴随生长应变的增大而增大。我们的研究结果阐明了螺旋状血管异常形成的机制,与肿瘤和静脉曲张的观察结果一致。这项研究也可以启发基于力学的疾病诊断技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Elasticity
Journal of Elasticity 工程技术-材料科学:综合
CiteScore
3.70
自引率
15.00%
发文量
74
审稿时长
>12 weeks
期刊介绍: The Journal of Elasticity was founded in 1971 by Marvin Stippes (1922-1979), with its main purpose being to report original and significant discoveries in elasticity. The Journal has broadened in scope over the years to include original contributions in the physical and mathematical science of solids. The areas of rational mechanics, mechanics of materials, including theories of soft materials, biomechanics, and engineering sciences that contribute to fundamental advancements in understanding and predicting the complex behavior of solids are particularly welcomed. The role of elasticity in all such behavior is well recognized and reporting significant discoveries in elasticity remains important to the Journal, as is its relation to thermal and mass transport, electromagnetism, and chemical reactions. Fundamental research that applies the concepts of physics and elements of applied mathematical science is of particular interest. Original research contributions will appear as either full research papers or research notes. Well-documented historical essays and reviews also are welcomed. Materials that will prove effective in teaching will appear as classroom notes. Computational and/or experimental investigations that emphasize relationships to the modeling of the novel physical behavior of solids at all scales are of interest. Guidance principles for content are to be found in the current interests of the Editorial Board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信