Dehong Wang, Shifeng Hou, Yiming Ruan, Wenbin Li, Yanzhong Ju
{"title":"Research on the Slip Model of Main Member Bar Connection of Transmission Tower Using Bolts","authors":"Dehong Wang, Shifeng Hou, Yiming Ruan, Wenbin Li, Yanzhong Ju","doi":"10.1007/s13296-024-00913-9","DOIUrl":null,"url":null,"abstract":"<div><p>To study the slip performance of main member bar connections in transmission towers, 77 groups of bolted main member bar connections were analyzed, and the influence of eight factors, that is, the number of bolts, bolt grade, angle grade, bolt diameter, angle thickness, angle width, preload, and friction factor, on the slip performance of the main member bar connections was studied. Moreover, a slip curve model was established. The results showed that the load-slip curve presented four stages. The pre-slip and post-slip stiffness first increased and then decreased with an increase in the bolt diameter and number. The slip load increased approximately linearly with increases in the bolt pre-tightening force, friction factor, and number of bolts. The ultimate load of the bolted joint was limited by the weaker bearing capacities of the angle steel and bolt group. These findings can serve as a reference for the design of such structures.</p></div>","PeriodicalId":596,"journal":{"name":"International Journal of Steel Structures","volume":"25 1","pages":"68 - 79"},"PeriodicalIF":1.1000,"publicationDate":"2024-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Steel Structures","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s13296-024-00913-9","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
To study the slip performance of main member bar connections in transmission towers, 77 groups of bolted main member bar connections were analyzed, and the influence of eight factors, that is, the number of bolts, bolt grade, angle grade, bolt diameter, angle thickness, angle width, preload, and friction factor, on the slip performance of the main member bar connections was studied. Moreover, a slip curve model was established. The results showed that the load-slip curve presented four stages. The pre-slip and post-slip stiffness first increased and then decreased with an increase in the bolt diameter and number. The slip load increased approximately linearly with increases in the bolt pre-tightening force, friction factor, and number of bolts. The ultimate load of the bolted joint was limited by the weaker bearing capacities of the angle steel and bolt group. These findings can serve as a reference for the design of such structures.
期刊介绍:
The International Journal of Steel Structures provides an international forum for a broad classification of technical papers in steel structural research and its applications. The journal aims to reach not only researchers, but also practicing engineers. Coverage encompasses such topics as stability, fatigue, non-linear behavior, dynamics, reliability, fire, design codes, computer-aided analysis and design, optimization, expert systems, connections, fabrications, maintenance, bridges, off-shore structures, jetties, stadiums, transmission towers, marine vessels, storage tanks, pressure vessels, aerospace, and pipelines and more.