Harry Lewis, Mahsa Mahtab, Fabrice Retière, Austin De St. Croix, Kurtis Raymond, Maia Henriksson-Ward, Nicholas Morrison, Aileen Zhang, Andrea Capra, Ryan Underwood
{"title":"Measurements of the quantum yield of silicon using Geiger-mode avalanching photodetectors","authors":"Harry Lewis, Mahsa Mahtab, Fabrice Retière, Austin De St. Croix, Kurtis Raymond, Maia Henriksson-Ward, Nicholas Morrison, Aileen Zhang, Andrea Capra, Ryan Underwood","doi":"10.1140/epjc/s10052-025-13883-x","DOIUrl":null,"url":null,"abstract":"<div><p>Accurate characterization of quantum yield is crucial to the reconstruction of energy depositions in silicon at the eV scale. This work presents a new method for experimentally calculating quantum yield using vacuum UV-sensitive silicon photomultipliers (SiPMs), which can be used to determine the probabilities that a UV photon absorbed in a silicon crystal will produce one, two, or three electron–hole pairs. Results are presented which fully constrain the distribution at photon energies up to 7.75 eV. This method works by exploiting the saturation of photon detection efficiency which occurs when these devices are biased sufficiently high above their avalanche breakdown voltage. The measured quantum yield values are lower than those that have been previously reported by experimental data and modelling – this is expected to impact the sensitivity of experiments searching for light dark matter through direct detection in semiconductors, and should also be taken into account when characterizing the performance of UV photodetectors with high quantum efficiency. Measurements have been taken using a Hamamatsu VUV4 and an FBK VUV-HD3 device, showing good agreements between devices, and at a range of temperatures from 163–233 K. The validity of the method is assessed using supplementary measurements of absolute photon detection efficiency, and an additional novel method of measuring average quantum yield using DC current–voltage measurements of SiPMs is presented and used for corroboration.</p></div>","PeriodicalId":788,"journal":{"name":"The European Physical Journal C","volume":"85 2","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjc/s10052-025-13883-x.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal C","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjc/s10052-025-13883-x","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate characterization of quantum yield is crucial to the reconstruction of energy depositions in silicon at the eV scale. This work presents a new method for experimentally calculating quantum yield using vacuum UV-sensitive silicon photomultipliers (SiPMs), which can be used to determine the probabilities that a UV photon absorbed in a silicon crystal will produce one, two, or three electron–hole pairs. Results are presented which fully constrain the distribution at photon energies up to 7.75 eV. This method works by exploiting the saturation of photon detection efficiency which occurs when these devices are biased sufficiently high above their avalanche breakdown voltage. The measured quantum yield values are lower than those that have been previously reported by experimental data and modelling – this is expected to impact the sensitivity of experiments searching for light dark matter through direct detection in semiconductors, and should also be taken into account when characterizing the performance of UV photodetectors with high quantum efficiency. Measurements have been taken using a Hamamatsu VUV4 and an FBK VUV-HD3 device, showing good agreements between devices, and at a range of temperatures from 163–233 K. The validity of the method is assessed using supplementary measurements of absolute photon detection efficiency, and an additional novel method of measuring average quantum yield using DC current–voltage measurements of SiPMs is presented and used for corroboration.
期刊介绍:
Experimental Physics I: Accelerator Based High-Energy Physics
Hadron and lepton collider physics
Lepton-nucleon scattering
High-energy nuclear reactions
Standard model precision tests
Search for new physics beyond the standard model
Heavy flavour physics
Neutrino properties
Particle detector developments
Computational methods and analysis tools
Experimental Physics II: Astroparticle Physics
Dark matter searches
High-energy cosmic rays
Double beta decay
Long baseline neutrino experiments
Neutrino astronomy
Axions and other weakly interacting light particles
Gravitational waves and observational cosmology
Particle detector developments
Computational methods and analysis tools
Theoretical Physics I: Phenomenology of the Standard Model and Beyond
Electroweak interactions
Quantum chromo dynamics
Heavy quark physics and quark flavour mixing
Neutrino physics
Phenomenology of astro- and cosmoparticle physics
Meson spectroscopy and non-perturbative QCD
Low-energy effective field theories
Lattice field theory
High temperature QCD and heavy ion physics
Phenomenology of supersymmetric extensions of the SM
Phenomenology of non-supersymmetric extensions of the SM
Model building and alternative models of electroweak symmetry breaking
Flavour physics beyond the SM
Computational algorithms and tools...etc.