Dynamic flow experiments for Bayesian optimization of a single process objective†

IF 3.4 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Federico Florit, Kakasaheb Y. Nandiwale, Cameron T. Armstrong, Katharina Grohowalski, Angel R. Diaz, Jason Mustakis, Steven M. Guinness and Klavs F. Jensen
{"title":"Dynamic flow experiments for Bayesian optimization of a single process objective†","authors":"Federico Florit, Kakasaheb Y. Nandiwale, Cameron T. Armstrong, Katharina Grohowalski, Angel R. Diaz, Jason Mustakis, Steven M. Guinness and Klavs F. Jensen","doi":"10.1039/D4RE00543K","DOIUrl":null,"url":null,"abstract":"<p >A new method, named dynamic experiment optimization (DynO), is developed for the current needs of chemical reaction optimization by leveraging for the first time both Bayesian optimization and data-rich dynamic experimentation in flow chemistry. DynO is readily implementable in automated systems and it is augmented with simple stopping criteria to guide non-expert users in fast and reagent-efficient optimization campaigns. The developed algorithms is compared <em>in silico</em> with the algorithm Dragonfly and an optimizer based on random selection, showing remarkable results in Euclidean design spaces superior to Dragonfly. Finally, DynO is validated with an ester hydrolysis reaction on an automated platform showcasing the simplicity of the method.</p>","PeriodicalId":101,"journal":{"name":"Reaction Chemistry & Engineering","volume":" 3","pages":" 656-666"},"PeriodicalIF":3.4000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/re/d4re00543k?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reaction Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/re/d4re00543k","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A new method, named dynamic experiment optimization (DynO), is developed for the current needs of chemical reaction optimization by leveraging for the first time both Bayesian optimization and data-rich dynamic experimentation in flow chemistry. DynO is readily implementable in automated systems and it is augmented with simple stopping criteria to guide non-expert users in fast and reagent-efficient optimization campaigns. The developed algorithms is compared in silico with the algorithm Dragonfly and an optimizer based on random selection, showing remarkable results in Euclidean design spaces superior to Dragonfly. Finally, DynO is validated with an ester hydrolysis reaction on an automated platform showcasing the simplicity of the method.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Reaction Chemistry & Engineering
Reaction Chemistry & Engineering Chemistry-Chemistry (miscellaneous)
CiteScore
6.60
自引率
7.70%
发文量
227
期刊介绍: Reaction Chemistry & Engineering is a new journal reporting cutting edge research into all aspects of making molecules for the benefit of fundamental research, applied processes and wider society. From fundamental, molecular-level chemistry to large scale chemical production, Reaction Chemistry & Engineering brings together communities of chemists and chemical engineers working to ensure the crucial role of reaction chemistry in today’s world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信