On the redox mechanism of methanol carbonylation on a dispersed ReOx/SiO2 catalyst†

IF 3.4 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Neil D. Tran and Alexander V. Mironenko
{"title":"On the redox mechanism of methanol carbonylation on a dispersed ReOx/SiO2 catalyst†","authors":"Neil D. Tran and Alexander V. Mironenko","doi":"10.1039/D4RE00496E","DOIUrl":null,"url":null,"abstract":"<p >Acetic acid is industrially produced by methanol carbonylation using Ir- or Rh-based homogeneous catalysts and a corrosive HI promoter. Recently, a heterogeneous catalyst with atomically dispersed ReO<small><sub>4</sub></small> sites on an inert mesoporous SBA-15 support demonstrated high acetic acid yields and stability without the need for a promoter (J. Qi, J. Finzel, H. Robatjazi, M. Xu, A. S. Hoffman, S. R. Bare, X. Pan and P. Christopher, Selective methanol carbonylation to acetic acid on heterogeneous atomically dispersed ReO<small><sub>4</sub></small>/SiO<small><sub>2</sub></small> catalysts, <em>J. Am. Chem. Soc.</em>, 2020, <strong>142</strong>(33), 14178–14189, https://doi.org/10.1021/jacs.0c05026). In this study, we investigate the reaction mechanisms of methanol carbonylation on monopodal –ORe(<img>O)<small><sub>3</sub></small> sites using density functional theory calculations, natural bond orbital analysis, and the energetic span model. We find that the reduction of dispersed Re(<small>VII</small>) oxide by CO through an indirect mechanism is essential for catalyst activation. The C–C coupling of methyl and carbonyl ligands is favorable in both Re(<small>V</small>) and Re(<small>III</small>) complexes, with Re(<small>III</small>) being superior due to transition state stabilization by a metal-localized lone electron pair. The preceding C–O bond activation is favorable only on Re(<small>V</small>) and leads to a thermodynamic sink, posing challenges in interpreting the high carbonylation activity in terms of monopodal ReO<small><sub><em>x</em></sub></small> site catalysis. We hypothesize that multi-nuclear sites or more exotic ligand environments drive the cooperative reaction mechanism of selective carbonylation.</p>","PeriodicalId":101,"journal":{"name":"Reaction Chemistry & Engineering","volume":" 3","pages":" 534-549"},"PeriodicalIF":3.4000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reaction Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/re/d4re00496e","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Acetic acid is industrially produced by methanol carbonylation using Ir- or Rh-based homogeneous catalysts and a corrosive HI promoter. Recently, a heterogeneous catalyst with atomically dispersed ReO4 sites on an inert mesoporous SBA-15 support demonstrated high acetic acid yields and stability without the need for a promoter (J. Qi, J. Finzel, H. Robatjazi, M. Xu, A. S. Hoffman, S. R. Bare, X. Pan and P. Christopher, Selective methanol carbonylation to acetic acid on heterogeneous atomically dispersed ReO4/SiO2 catalysts, J. Am. Chem. Soc., 2020, 142(33), 14178–14189, https://doi.org/10.1021/jacs.0c05026). In this study, we investigate the reaction mechanisms of methanol carbonylation on monopodal –ORe(O)3 sites using density functional theory calculations, natural bond orbital analysis, and the energetic span model. We find that the reduction of dispersed Re(VII) oxide by CO through an indirect mechanism is essential for catalyst activation. The C–C coupling of methyl and carbonyl ligands is favorable in both Re(V) and Re(III) complexes, with Re(III) being superior due to transition state stabilization by a metal-localized lone electron pair. The preceding C–O bond activation is favorable only on Re(V) and leads to a thermodynamic sink, posing challenges in interpreting the high carbonylation activity in terms of monopodal ReOx site catalysis. We hypothesize that multi-nuclear sites or more exotic ligand environments drive the cooperative reaction mechanism of selective carbonylation.

Abstract Image

关于分散 ReOx/SiO2 催化剂上甲醇羰基化的氧化还原机理†。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Reaction Chemistry & Engineering
Reaction Chemistry & Engineering Chemistry-Chemistry (miscellaneous)
CiteScore
6.60
自引率
7.70%
发文量
227
期刊介绍: Reaction Chemistry & Engineering is a new journal reporting cutting edge research into all aspects of making molecules for the benefit of fundamental research, applied processes and wider society. From fundamental, molecular-level chemistry to large scale chemical production, Reaction Chemistry & Engineering brings together communities of chemists and chemical engineers working to ensure the crucial role of reaction chemistry in today’s world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信