A novel core–shell bimetallic ZrAl-MOF simultaneously boosting electrostatic attraction and ion exchange to eliminate excessive fluoride†

IF 3.4 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Zhiwei Liu, Jingjing Wang, Qian Liu, Liying Wang, Zhenzhu Cao and Yongfeng Zhang
{"title":"A novel core–shell bimetallic ZrAl-MOF simultaneously boosting electrostatic attraction and ion exchange to eliminate excessive fluoride†","authors":"Zhiwei Liu, Jingjing Wang, Qian Liu, Liying Wang, Zhenzhu Cao and Yongfeng Zhang","doi":"10.1039/D4RE00452C","DOIUrl":null,"url":null,"abstract":"<p >Excess fluoride in drinking water can cause poisoning. To solve this problem, a porous metal–organic framework (MOF) was fabricated <em>via</em> the solvothermal approach and employed for the removal of fluoride ions from water. ZrAl-MOF was fabricated by self-assembly of polyvalent Zr<small><sup>4+</sup></small>, Al<small><sup>3+</sup></small>metal ions and 4,4-biphenyldicarboxylic acid (BPDC). The developed metal-based ZrAl-MOF was used to remove fluoride ions from water and could remove fluoride ions to a maximum of 109.2 mg g<small><sup>−1</sup></small> (308 K). ZrAl-MOF has a special core–shell structure with a layer of small balls stacked outside and cobweb-like structure inside. The properties of the bimetallic MOF can be adjusted by Zr<small><sup>4+</sup></small>, Al<small><sup>3+</sup></small> metal ions and BPDC to meet the demand for maximum adsorption performance. Bimetallic MOFs commonly have a substantial specific surface area, capable of providing numerous active sites and being favorable for the adsorption reaction of substances. The electronic properties of different metals may lead to stronger electrostatic attraction and enhanced adsorption of fluoride ions. The factors affecting the adsorption effect, such as solution pH, ZrAl-MOF dosage, reaction time, initial fluoride concentration, temperature, and coexisting anions, were optimized. The fluorine adsorption capacity of ZrAl-MOF was less affected by the adsorbent under acidic conditions and by the presence of sulphate and nitrate ions in the water. In addition, the experimental data were fitted with various adsorption kinetic and isotherm models. It is shown that fluorine adsorption is feasible and spontaneous. The fluorine adsorption mechanism of ZrAl-MOF is mainly electrostatic attraction and ion exchange.</p>","PeriodicalId":101,"journal":{"name":"Reaction Chemistry & Engineering","volume":" 3","pages":" 694-705"},"PeriodicalIF":3.4000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reaction Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/re/d4re00452c","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Excess fluoride in drinking water can cause poisoning. To solve this problem, a porous metal–organic framework (MOF) was fabricated via the solvothermal approach and employed for the removal of fluoride ions from water. ZrAl-MOF was fabricated by self-assembly of polyvalent Zr4+, Al3+metal ions and 4,4-biphenyldicarboxylic acid (BPDC). The developed metal-based ZrAl-MOF was used to remove fluoride ions from water and could remove fluoride ions to a maximum of 109.2 mg g−1 (308 K). ZrAl-MOF has a special core–shell structure with a layer of small balls stacked outside and cobweb-like structure inside. The properties of the bimetallic MOF can be adjusted by Zr4+, Al3+ metal ions and BPDC to meet the demand for maximum adsorption performance. Bimetallic MOFs commonly have a substantial specific surface area, capable of providing numerous active sites and being favorable for the adsorption reaction of substances. The electronic properties of different metals may lead to stronger electrostatic attraction and enhanced adsorption of fluoride ions. The factors affecting the adsorption effect, such as solution pH, ZrAl-MOF dosage, reaction time, initial fluoride concentration, temperature, and coexisting anions, were optimized. The fluorine adsorption capacity of ZrAl-MOF was less affected by the adsorbent under acidic conditions and by the presence of sulphate and nitrate ions in the water. In addition, the experimental data were fitted with various adsorption kinetic and isotherm models. It is shown that fluorine adsorption is feasible and spontaneous. The fluorine adsorption mechanism of ZrAl-MOF is mainly electrostatic attraction and ion exchange.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Reaction Chemistry & Engineering
Reaction Chemistry & Engineering Chemistry-Chemistry (miscellaneous)
CiteScore
6.60
自引率
7.70%
发文量
227
期刊介绍: Reaction Chemistry & Engineering is a new journal reporting cutting edge research into all aspects of making molecules for the benefit of fundamental research, applied processes and wider society. From fundamental, molecular-level chemistry to large scale chemical production, Reaction Chemistry & Engineering brings together communities of chemists and chemical engineers working to ensure the crucial role of reaction chemistry in today’s world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信