Task Nuisance Filtration for Unsupervised Domain Adaptation

IF 2.9 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
David Uliel;Raja Giryes
{"title":"Task Nuisance Filtration for Unsupervised Domain Adaptation","authors":"David Uliel;Raja Giryes","doi":"10.1109/OJSP.2025.3536850","DOIUrl":null,"url":null,"abstract":"In unsupervised domain adaptation (UDA) labeled data is available for one domain (Source Domain) which is generated according to some distribution, and unlabeled data is available for a second domain (Target Domain) which is generated from a possibly different distribution but has the same task. The goal is to learn a model that performs well on the target domain although labels are available only for the source data. Many recent works attempt to align the source and the target domains by matching their marginal distributions in a learned feature space. In this paper, we address the domain difference as a nuisance, and enables better adaptability of the domains, by encouraging minimality of the target domain representation, disentanglement of the features, and a smoother feature space that cluster better the target data. To this end, we use the information bottleneck theory and a classical technique from the blind source separation framework, namely, ICA (independent components analysis). We show that these concepts can improve performance of leading domain adaptation methods on various domain adaptation benchmarks.","PeriodicalId":73300,"journal":{"name":"IEEE open journal of signal processing","volume":"6 ","pages":"303-311"},"PeriodicalIF":2.9000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10858365","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of signal processing","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10858365/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In unsupervised domain adaptation (UDA) labeled data is available for one domain (Source Domain) which is generated according to some distribution, and unlabeled data is available for a second domain (Target Domain) which is generated from a possibly different distribution but has the same task. The goal is to learn a model that performs well on the target domain although labels are available only for the source data. Many recent works attempt to align the source and the target domains by matching their marginal distributions in a learned feature space. In this paper, we address the domain difference as a nuisance, and enables better adaptability of the domains, by encouraging minimality of the target domain representation, disentanglement of the features, and a smoother feature space that cluster better the target data. To this end, we use the information bottleneck theory and a classical technique from the blind source separation framework, namely, ICA (independent components analysis). We show that these concepts can improve performance of leading domain adaptation methods on various domain adaptation benchmarks.
无监督域自适应的任务干扰过滤
在无监督域自适应(UDA)中,根据某种分布生成的一个域(源域)可以使用标记数据,而从可能不同的分布生成的另一个域(目标域)可以使用未标记数据。目标是学习一个在目标领域上表现良好的模型,尽管标签仅对源数据可用。最近的许多工作试图通过在学习的特征空间中匹配源域和目标域的边缘分布来对齐源域和目标域。在本文中,我们将领域差异视为一种麻烦,并通过鼓励目标领域表示的最小化,特征的解纠缠以及更平滑的特征空间来更好地聚类目标数据,从而实现更好的领域适应性。为此,我们使用了信息瓶颈理论和盲源分离框架中的经典技术,即ICA(独立分量分析)。我们证明了这些概念可以提高领先的领域自适应方法在各种领域自适应基准上的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.30
自引率
0.00%
发文量
0
审稿时长
22 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信