Conversion between the numerical simulation and the calculation using the Deformation Energy Ratio approach

IF 1.6 Q2 MULTIDISCIPLINARY SCIENCES
MethodsX Pub Date : 2025-02-15 DOI:10.1016/j.mex.2025.103221
Kirill Golubiatnikov, František Wald
{"title":"Conversion between the numerical simulation and the calculation using the Deformation Energy Ratio approach","authors":"Kirill Golubiatnikov,&nbsp;František Wald","doi":"10.1016/j.mex.2025.103221","DOIUrl":null,"url":null,"abstract":"<div><div>In numerical simulations and calculations, material curves are defined in different ways. A direct transfer of quantities between them is inaccurate, requiring a proper transformation of key values. The Deformation Energy Ratio approach is based on well-established mechanical principles, such as Neuber's rule and the Equivalent Strain Energy Density method, which express deformation energy as a function of stress and strain. This approach accounts for material conditions in both analyses and enables a more precise limit adjustment. Its simplicity allows for application in both analytical and numerical solutions.<ul><li><span>•</span><span><div>Allows conversion of values between numerical simulation and calculation for any steel.</div></span></li><li><span>•</span><span><div>It takes into account the influence of material properties, thus comprehensively considering the effects of different factors.</div></span></li><li><span>•</span><span><div>The verification has presented a high accuracy of the values obtained. The average deviation is &lt;5.0 % and the maximum deviation is 5.6 %.</div></span></li></ul></div></div>","PeriodicalId":18446,"journal":{"name":"MethodsX","volume":"14 ","pages":"Article 103221"},"PeriodicalIF":1.6000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MethodsX","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215016125000688","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

In numerical simulations and calculations, material curves are defined in different ways. A direct transfer of quantities between them is inaccurate, requiring a proper transformation of key values. The Deformation Energy Ratio approach is based on well-established mechanical principles, such as Neuber's rule and the Equivalent Strain Energy Density method, which express deformation energy as a function of stress and strain. This approach accounts for material conditions in both analyses and enables a more precise limit adjustment. Its simplicity allows for application in both analytical and numerical solutions.
  • Allows conversion of values between numerical simulation and calculation for any steel.
  • It takes into account the influence of material properties, thus comprehensively considering the effects of different factors.
  • The verification has presented a high accuracy of the values obtained. The average deviation is <5.0 % and the maximum deviation is 5.6 %.

Abstract Image

用变形能比法进行数值模拟与计算的转换
在数值模拟和计算中,材料曲线以不同的方式定义。在它们之间直接转换数量是不准确的,需要对关键值进行适当的转换。变形能比法是基于公认的力学原理,如Neuber规则和等效应变能密度法,将变形能表示为应力和应变的函数。这种方法考虑了两种分析中的物质条件,并能够进行更精确的极限调整。它的简单性允许在解析解和数值解中应用。•允许数值模拟和任何钢计算之间的值转换。•考虑到材料性能的影响,从而综合考虑不同因素的影响。•验证表明所获得的值具有很高的准确性。平均偏差为5.0%,最大偏差为5.6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
MethodsX
MethodsX Health Professions-Medical Laboratory Technology
CiteScore
3.60
自引率
5.30%
发文量
314
审稿时长
7 weeks
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信