Quantitative macro and micro analysis on enhanced oil recovery (EOR) mechanisms of multi-component composite steam flooding (MCCSF) based on image recognition algorithm

0 ENERGY & FUELS
Qingjing Hong , Zhanxi Pang , Xiaohong Liu , Bo Wang , Dong Liu , Hui Liao , Luting Wang
{"title":"Quantitative macro and micro analysis on enhanced oil recovery (EOR) mechanisms of multi-component composite steam flooding (MCCSF) based on image recognition algorithm","authors":"Qingjing Hong ,&nbsp;Zhanxi Pang ,&nbsp;Xiaohong Liu ,&nbsp;Bo Wang ,&nbsp;Dong Liu ,&nbsp;Hui Liao ,&nbsp;Luting Wang","doi":"10.1016/j.geoen.2025.213766","DOIUrl":null,"url":null,"abstract":"<div><div>Multi-component composite steam flooding (MCCSF) has emerged as a promising method for enhancing oil recovery (EOR) in heavy oil reservoirs. However, its complex EOR mechanisms remain unclear, and a quantitative evaluation method for production performance in the process has not been established. In this paper, one dimensional (1D) displacement experiments were conducted to measure the oil displacement efficiency (ODE), and the optimal composite mode of multi-components was selected. This was coupled with two dimensional (2D) visualization experiments to investigate the macroscopic and microscopic EOR mechanisms during the process of MCCSF. Image recognition algorithms and image segmentation techniques were introduced to quantitatively analyze the volume of remaining oil (VORO) and the sweep efficiency at different locations during the different displacement stages. The results indicated that the integration of foams and viscosity reducer (VR) significantly improved both sweep efficiency and ODE. Finally, the effective oil production period was obviously extended. The ODE in the 1D experiments reached 76.3%, and the overall sweep efficiency in the 2D visualization experiments reached 97.97%. During pure steam flooding (PSF), the swept area was mainly targeted the near-well zone and the main flow channel. However, after adding foams and a VR for along with steam flooding, the remaining oil in the side channels and corner zones was effectively mobilized, and the ODE in the central swept areas and the displacement front were significantly enhanced, resulting in a final oil recovery factor (ORF) of 74.72%, which was 46.71% higher than that of PSF. This study primarily investigated the EOR mechanisms of MCCSF from two perspectives: improving ODE and sweep efficiency. These findings provided valuable insights and offer a quantitative method for the development effect evaluation.</div></div>","PeriodicalId":100578,"journal":{"name":"Geoenergy Science and Engineering","volume":"249 ","pages":"Article 213766"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoenergy Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949891025001241","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Multi-component composite steam flooding (MCCSF) has emerged as a promising method for enhancing oil recovery (EOR) in heavy oil reservoirs. However, its complex EOR mechanisms remain unclear, and a quantitative evaluation method for production performance in the process has not been established. In this paper, one dimensional (1D) displacement experiments were conducted to measure the oil displacement efficiency (ODE), and the optimal composite mode of multi-components was selected. This was coupled with two dimensional (2D) visualization experiments to investigate the macroscopic and microscopic EOR mechanisms during the process of MCCSF. Image recognition algorithms and image segmentation techniques were introduced to quantitatively analyze the volume of remaining oil (VORO) and the sweep efficiency at different locations during the different displacement stages. The results indicated that the integration of foams and viscosity reducer (VR) significantly improved both sweep efficiency and ODE. Finally, the effective oil production period was obviously extended. The ODE in the 1D experiments reached 76.3%, and the overall sweep efficiency in the 2D visualization experiments reached 97.97%. During pure steam flooding (PSF), the swept area was mainly targeted the near-well zone and the main flow channel. However, after adding foams and a VR for along with steam flooding, the remaining oil in the side channels and corner zones was effectively mobilized, and the ODE in the central swept areas and the displacement front were significantly enhanced, resulting in a final oil recovery factor (ORF) of 74.72%, which was 46.71% higher than that of PSF. This study primarily investigated the EOR mechanisms of MCCSF from two perspectives: improving ODE and sweep efficiency. These findings provided valuable insights and offer a quantitative method for the development effect evaluation.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信