F. Chiappori , F. Di Palma , A. Cavalli , M. de Rosa , F. Viti
{"title":"Dynamical features of smooth muscle actin pathological mutants: The arginine-257(258)-Cysteine cases","authors":"F. Chiappori , F. Di Palma , A. Cavalli , M. de Rosa , F. Viti","doi":"10.1016/j.csbj.2025.02.010","DOIUrl":null,"url":null,"abstract":"<div><div>The R257(8)C mutation in smooth muscle actins, ACTG2 and ACTA2, is the most frequent cause of severe genetic diseases: namely, visceral myopathy, and familial thoracic aortic aneurysms and dissections, which respectively, stem from impairment of the visceral and vascular muscle. The molecular mechanisms underlying such pathologies are not fully elucidated. In the absence of experimental data of WT and mutated actins in their monomeric (g-) and filamentous (f-) form, molecular dynamics can shed light on the role of the R257(8)C in protein structure and dynamics. Analysis of g-actins does not show significant differences between WT and mutated proteins suggesting the correct monomers folding. On the contrary, mutated filaments are destabilized. Subunits of R257C f-ACTG2 adopt non optimal angles and in R258C f-ACTA2 we observe depolymerization already in the simulated time frame. Overall, our data points to a crucial role of residue R257(8) in actin structure and dynamics, in particular when the protein assembles into the filament.</div></div>","PeriodicalId":10715,"journal":{"name":"Computational and structural biotechnology journal","volume":"27 ","pages":"Pages 753-764"},"PeriodicalIF":4.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and structural biotechnology journal","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2001037025000376","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The R257(8)C mutation in smooth muscle actins, ACTG2 and ACTA2, is the most frequent cause of severe genetic diseases: namely, visceral myopathy, and familial thoracic aortic aneurysms and dissections, which respectively, stem from impairment of the visceral and vascular muscle. The molecular mechanisms underlying such pathologies are not fully elucidated. In the absence of experimental data of WT and mutated actins in their monomeric (g-) and filamentous (f-) form, molecular dynamics can shed light on the role of the R257(8)C in protein structure and dynamics. Analysis of g-actins does not show significant differences between WT and mutated proteins suggesting the correct monomers folding. On the contrary, mutated filaments are destabilized. Subunits of R257C f-ACTG2 adopt non optimal angles and in R258C f-ACTA2 we observe depolymerization already in the simulated time frame. Overall, our data points to a crucial role of residue R257(8) in actin structure and dynamics, in particular when the protein assembles into the filament.
期刊介绍:
Computational and Structural Biotechnology Journal (CSBJ) is an online gold open access journal publishing research articles and reviews after full peer review. All articles are published, without barriers to access, immediately upon acceptance. The journal places a strong emphasis on functional and mechanistic understanding of how molecular components in a biological process work together through the application of computational methods. Structural data may provide such insights, but they are not a pre-requisite for publication in the journal. Specific areas of interest include, but are not limited to:
Structure and function of proteins, nucleic acids and other macromolecules
Structure and function of multi-component complexes
Protein folding, processing and degradation
Enzymology
Computational and structural studies of plant systems
Microbial Informatics
Genomics
Proteomics
Metabolomics
Algorithms and Hypothesis in Bioinformatics
Mathematical and Theoretical Biology
Computational Chemistry and Drug Discovery
Microscopy and Molecular Imaging
Nanotechnology
Systems and Synthetic Biology