Operational flexibility-oriented selection of working fluid for organic Rankine cycles via Bayesian optimization

IF 3.9 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Jiayuan Wang, Yuxin Zhang, Chentao Mei, Lingyu Zhu
{"title":"Operational flexibility-oriented selection of working fluid for organic Rankine cycles via Bayesian optimization","authors":"Jiayuan Wang,&nbsp;Yuxin Zhang,&nbsp;Chentao Mei,&nbsp;Lingyu Zhu","doi":"10.1016/j.compchemeng.2025.109043","DOIUrl":null,"url":null,"abstract":"<div><div>Working fluid selection is a crucial part of organic Rankine cycle (ORC) designs. Traditional selection methods primarily focus on optimizing performance under specific nominal operating conditions, often neglecting potential efficiency losses and feasibility issues that may arise under off-design conditions due to fluctuations in the heat source and sink. This research introduces a novel method for optimizing working fluid selection to achieve robust and efficient operation in the face of environmental variations. Specifically, operational flexibility is analyzed based on the ORC operational model to capture performance deviations from nominal conditions, and is quantified by evaluating the size of the feasible operational region within the uncertain parameter space. Working fluid selection is optimized simultaneously with the cycle configurations, resulting in a computationally challenging mixed-integer nonlinear programming (MINLP) problem, which is addressed through Bayesian optimization. A case study on geothermal brine heat recovery with a recuperative ORC compares flexibility-oriented and conventional working fluid selections, demonstrating a 102% increase in operational flexibility at the cost of an 11.5% efficiency loss. This research underscores the significant impact of working fluid selection on operational flexibility and demonstrates the effectiveness of Bayesian optimization in solving complex MINLP problems for integrated molecule-level and process-level designs.</div></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"197 ","pages":"Article 109043"},"PeriodicalIF":3.9000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S009813542500047X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Working fluid selection is a crucial part of organic Rankine cycle (ORC) designs. Traditional selection methods primarily focus on optimizing performance under specific nominal operating conditions, often neglecting potential efficiency losses and feasibility issues that may arise under off-design conditions due to fluctuations in the heat source and sink. This research introduces a novel method for optimizing working fluid selection to achieve robust and efficient operation in the face of environmental variations. Specifically, operational flexibility is analyzed based on the ORC operational model to capture performance deviations from nominal conditions, and is quantified by evaluating the size of the feasible operational region within the uncertain parameter space. Working fluid selection is optimized simultaneously with the cycle configurations, resulting in a computationally challenging mixed-integer nonlinear programming (MINLP) problem, which is addressed through Bayesian optimization. A case study on geothermal brine heat recovery with a recuperative ORC compares flexibility-oriented and conventional working fluid selections, demonstrating a 102% increase in operational flexibility at the cost of an 11.5% efficiency loss. This research underscores the significant impact of working fluid selection on operational flexibility and demonstrates the effectiveness of Bayesian optimization in solving complex MINLP problems for integrated molecule-level and process-level designs.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Chemical Engineering
Computers & Chemical Engineering 工程技术-工程:化工
CiteScore
8.70
自引率
14.00%
发文量
374
审稿时长
70 days
期刊介绍: Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信