The two-echelon vehicle routing problem with pickups, deliveries, and deadlines

IF 4.1 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
M. Arya Zamal , Albert H. Schrotenboer , Tom Van Woensel
{"title":"The two-echelon vehicle routing problem with pickups, deliveries, and deadlines","authors":"M. Arya Zamal ,&nbsp;Albert H. Schrotenboer ,&nbsp;Tom Van Woensel","doi":"10.1016/j.cor.2025.107016","DOIUrl":null,"url":null,"abstract":"<div><div>This paper introduces the Two-Echelon Vehicle Routing Problem with Pickups, Deliveries, and Deadlines (2E-VRP-PDD), an emerging routing variant addressing the operations of logistics companies connecting consumers and suppliers in metropolitan areas. Logistics companies typically organize their logistics in such metropolitan areas via multiple geographically dispersed two-echelon distribution systems. The 2E-VRP-PDD is the practical problem that needs to be solved within each of such a single two-echelon distribution system, thereby merging first and last-mile logistics operations. Specifically, it integrates the distribution of last-mile parcels from the hub via satellites to the consumers with the collection of first-mile parcels from the suppliers via satellites that return to the hub. Moreover, it considers deadlines before first-mile parcels arrive at the hub, which must be transported further in the network. We solve the 2E-VRP-PDD with a newly developed Adaptive Large Neighborhood Search (ALNS) combined with a post-process integer programming model. Our ALNS provides high-quality solutions on established benchmark instances from the literature. On a new benchmark set for the 2E-VRP-PDD, we find that modifying time restrictions, such as parcel delivery deadlines at the city hub, can lead to an 8.27% cost increase, highlighting the overhead associated with same-day delivery compared to next-day delivery operations. Finally, by analyzing real-life instances containing up to 2150 customers obtained from our industry collaborator in Jakarta, Indonesia, we show that our ALNS can reduce the cost of operations by up to 17.54% compared to current practice.</div></div>","PeriodicalId":10542,"journal":{"name":"Computers & Operations Research","volume":"179 ","pages":"Article 107016"},"PeriodicalIF":4.1000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Operations Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0305054825000449","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper introduces the Two-Echelon Vehicle Routing Problem with Pickups, Deliveries, and Deadlines (2E-VRP-PDD), an emerging routing variant addressing the operations of logistics companies connecting consumers and suppliers in metropolitan areas. Logistics companies typically organize their logistics in such metropolitan areas via multiple geographically dispersed two-echelon distribution systems. The 2E-VRP-PDD is the practical problem that needs to be solved within each of such a single two-echelon distribution system, thereby merging first and last-mile logistics operations. Specifically, it integrates the distribution of last-mile parcels from the hub via satellites to the consumers with the collection of first-mile parcels from the suppliers via satellites that return to the hub. Moreover, it considers deadlines before first-mile parcels arrive at the hub, which must be transported further in the network. We solve the 2E-VRP-PDD with a newly developed Adaptive Large Neighborhood Search (ALNS) combined with a post-process integer programming model. Our ALNS provides high-quality solutions on established benchmark instances from the literature. On a new benchmark set for the 2E-VRP-PDD, we find that modifying time restrictions, such as parcel delivery deadlines at the city hub, can lead to an 8.27% cost increase, highlighting the overhead associated with same-day delivery compared to next-day delivery operations. Finally, by analyzing real-life instances containing up to 2150 customers obtained from our industry collaborator in Jakarta, Indonesia, we show that our ALNS can reduce the cost of operations by up to 17.54% compared to current practice.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Operations Research
Computers & Operations Research 工程技术-工程:工业
CiteScore
8.60
自引率
8.70%
发文量
292
审稿时长
8.5 months
期刊介绍: Operations research and computers meet in a large number of scientific fields, many of which are of vital current concern to our troubled society. These include, among others, ecology, transportation, safety, reliability, urban planning, economics, inventory control, investment strategy and logistics (including reverse logistics). Computers & Operations Research provides an international forum for the application of computers and operations research techniques to problems in these and related fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信