K4CuO2Cl2: A new alkali metal copper oxyhalide via aqueous solution processes

IF 3.4 3区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR
Li Zhang , Junliang Sun , Xianji Qiao
{"title":"K4CuO2Cl2: A new alkali metal copper oxyhalide via aqueous solution processes","authors":"Li Zhang ,&nbsp;Junliang Sun ,&nbsp;Xianji Qiao","doi":"10.1016/j.solidstatesciences.2025.107868","DOIUrl":null,"url":null,"abstract":"<div><div>The study of mixed-anion compounds, aimed at combining the advantages of different anions, has been extensively studied. Metal oxyhalides, with a view to combining the benefits of oxides and halides, play a crucial role in numerous advanced scientific and technological fields. Here we present a novel K<sub>4</sub>CuO<sub>2</sub>Cl<sub>2</sub> compound whose structure was studied via single-crystal X-ray diffraction. The synthesis of the K<sub>4</sub>CuO<sub>2</sub>Cl<sub>2</sub> compound employs a low-temperature aqueous solution method, in contrast to the high-temperature synthesis of K<sub>4</sub>Cu<sub>4</sub>OCl<sub>10</sub>. The crystal structure of K<sub>4</sub>CuO<sub>2</sub>Cl<sub>2</sub> crystallizes in space group <em>P</em>4<sub>2</sub>/<em>mnm</em> with tetragonal symmetry. Moreover, the K atom exhibits a tetrahedral coordination whilst Cu atom have a quadrilateral plane coordination in K<sub>4</sub>CuO<sub>2</sub>Cl<sub>2</sub>, in contrast to the exclusively tetrahedral coordination found in K<sub>4</sub>Cu<sub>4</sub>OCl<sub>10</sub>. This unique structural feature is expected to impart distinctive magnetic properties.</div></div>","PeriodicalId":432,"journal":{"name":"Solid State Sciences","volume":"162 ","pages":"Article 107868"},"PeriodicalIF":3.4000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Sciences","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1293255825000469","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

The study of mixed-anion compounds, aimed at combining the advantages of different anions, has been extensively studied. Metal oxyhalides, with a view to combining the benefits of oxides and halides, play a crucial role in numerous advanced scientific and technological fields. Here we present a novel K4CuO2Cl2 compound whose structure was studied via single-crystal X-ray diffraction. The synthesis of the K4CuO2Cl2 compound employs a low-temperature aqueous solution method, in contrast to the high-temperature synthesis of K4Cu4OCl10. The crystal structure of K4CuO2Cl2 crystallizes in space group P42/mnm with tetragonal symmetry. Moreover, the K atom exhibits a tetrahedral coordination whilst Cu atom have a quadrilateral plane coordination in K4CuO2Cl2, in contrast to the exclusively tetrahedral coordination found in K4Cu4OCl10. This unique structural feature is expected to impart distinctive magnetic properties.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Solid State Sciences
Solid State Sciences 化学-无机化学与核化学
CiteScore
6.60
自引率
2.90%
发文量
214
审稿时长
27 days
期刊介绍: Solid State Sciences is the journal for researchers from the broad solid state chemistry and physics community. It publishes key articles on all aspects of solid state synthesis, structure-property relationships, theory and functionalities, in relation with experiments. Key topics for stand-alone papers and special issues: -Novel ways of synthesis, inorganic functional materials, including porous and glassy materials, hybrid organic-inorganic compounds and nanomaterials -Physical properties, emphasizing but not limited to the electrical, magnetical and optical features -Materials related to information technology and energy and environmental sciences. The journal publishes feature articles from experts in the field upon invitation. Solid State Sciences - your gateway to energy-related materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信