Tweet question classification for enhancing Tweet Question Answering System

Chindukuri Mallikarjuna, Sangeetha Sivanesan
{"title":"Tweet question classification for enhancing Tweet Question Answering System","authors":"Chindukuri Mallikarjuna,&nbsp;Sangeetha Sivanesan","doi":"10.1016/j.nlp.2025.100130","DOIUrl":null,"url":null,"abstract":"<div><div>In the evolving landscape of social media, effective Question Answering (QA) systems are crucial for enhancing user engagement and satisfaction. Question classification (QC) is vital for improving the efficiency and accuracy of QA systems. Given the informal and noisy nature of social media texts, which differ significantly from general domain QC datasets, there is a strong need for a specialized tweet QC system for social media QA. In this study, we annotated questions in the Tweet QA dataset, performed tweet question classification, and developed the TweetQC dataset, comprising tweet questions with associated labels. We fine-tuned both general and domain-specific pre-trained language models (PTLMs) on the tweet questions. Experimental results show that TweetRoBERTa achieves the highest F1-score of 91.98, outperforming other PTLMs. Additionally, PTLMs trained on the TREC dataset and evaluated on the TweetQC dataset exhibited an accuracy decline of over 35% compared to models trained and evaluated on the TweetQC dataset. Furthermore, incorporating the expected answer type as an additional feature significantly enhances the performance of tweet QA models. Experimental results proves that TweetRoBERTa achieved the maximum ROUGEL score when compared with existing models for Tweet QA system.</div></div>","PeriodicalId":100944,"journal":{"name":"Natural Language Processing Journal","volume":"10 ","pages":"Article 100130"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Language Processing Journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949719125000068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the evolving landscape of social media, effective Question Answering (QA) systems are crucial for enhancing user engagement and satisfaction. Question classification (QC) is vital for improving the efficiency and accuracy of QA systems. Given the informal and noisy nature of social media texts, which differ significantly from general domain QC datasets, there is a strong need for a specialized tweet QC system for social media QA. In this study, we annotated questions in the Tweet QA dataset, performed tweet question classification, and developed the TweetQC dataset, comprising tweet questions with associated labels. We fine-tuned both general and domain-specific pre-trained language models (PTLMs) on the tweet questions. Experimental results show that TweetRoBERTa achieves the highest F1-score of 91.98, outperforming other PTLMs. Additionally, PTLMs trained on the TREC dataset and evaluated on the TweetQC dataset exhibited an accuracy decline of over 35% compared to models trained and evaluated on the TweetQC dataset. Furthermore, incorporating the expected answer type as an additional feature significantly enhances the performance of tweet QA models. Experimental results proves that TweetRoBERTa achieved the maximum ROUGEL score when compared with existing models for Tweet QA system.
推特问题分类增强推特问答系统
在不断发展的社交媒体环境中,有效的问答(QA)系统对于提高用户参与度和满意度至关重要。问题分类(QC)对于提高质量保证系统的效率和准确性至关重要。考虑到社交媒体文本的非正式和嘈杂的性质,这与一般领域QC数据集有很大的不同,因此强烈需要一个专门的社交媒体QA tweet QC系统。在本研究中,我们对Tweet QA数据集中的问题进行了注释,对Tweet问题进行了分类,并开发了TweetQC数据集,该数据集包含带有相关标签的Tweet问题。我们在tweet问题上对通用和特定领域的预训练语言模型(ptlm)进行了微调。实验结果表明,TweetRoBERTa达到了最高的f1分数91.98,优于其他ptlm。此外,在TREC数据集上训练并在TweetQC数据集上评估的ptlm与在TweetQC数据集上训练和评估的模型相比,准确率下降了35%以上。此外,将预期答案类型作为一个附加特征显著提高了tweet QA模型的性能。实验结果表明,TweetRoBERTa与现有的Tweet QA系统模型相比,获得了最大的ROUGEL分数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信