Addressing computation resource exhaustion associated with deep learning training of three-dimensional hyperspectral images using multiclass weed classification

IF 8.2 Q1 AGRICULTURE, MULTIDISCIPLINARY
Billy G. Ram , Kirk Howatt , Joseph Mettler , Xin Sun
{"title":"Addressing computation resource exhaustion associated with deep learning training of three-dimensional hyperspectral images using multiclass weed classification","authors":"Billy G. Ram ,&nbsp;Kirk Howatt ,&nbsp;Joseph Mettler ,&nbsp;Xin Sun","doi":"10.1016/j.aiia.2025.02.005","DOIUrl":null,"url":null,"abstract":"<div><div>Addressing the computational bottleneck of training deep learning models on high-resolution, three-dimensional images, this study introduces an optimized approach, combining distributed learning (parallelism), image resolution, and data augmentation. We propose analysis methodologies that help train deep learning (DL) models on proximal hyperspectral images, demonstrating superior performance in eight-class crop (canola, field pea, sugarbeet and flax) and weed (redroot pigweed, resistant kochia, waterhemp and ragweed) classification. Utilizing state-of-the-art model architectures (ResNet-50, VGG-16, DenseNet, EfficientNet) in comparison with ResNet-50 inspired Hyper-Residual Convolutional Neural Network model. Our findings reveal that an image resolution of 100x100x54 maximizes accuracy while maintaining computational efficiency, surpassing the performance of 150x150x54 and 50x50x54 resolution images. By employing data parallelism, we overcome system memory limitations and achieve exceptional classification results, with test accuracies and F1-scores reaching 0.96 and 0.97, respectively. This research highlights the potential of residual-based networks for analyzing hyperspectral images. It offers valuable insights into optimizing deep learning models in resource-constrained environments. The research presents detailed training pipelines for deep learning models that utilize large (&gt; 4k) hyperspectral training samples, including background and without any data preprocessing. This approach enables the training of deep learning models directly on raw hyperspectral data.</div></div>","PeriodicalId":52814,"journal":{"name":"Artificial Intelligence in Agriculture","volume":"15 2","pages":"Pages 131-146"},"PeriodicalIF":8.2000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence in Agriculture","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589721725000248","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Addressing the computational bottleneck of training deep learning models on high-resolution, three-dimensional images, this study introduces an optimized approach, combining distributed learning (parallelism), image resolution, and data augmentation. We propose analysis methodologies that help train deep learning (DL) models on proximal hyperspectral images, demonstrating superior performance in eight-class crop (canola, field pea, sugarbeet and flax) and weed (redroot pigweed, resistant kochia, waterhemp and ragweed) classification. Utilizing state-of-the-art model architectures (ResNet-50, VGG-16, DenseNet, EfficientNet) in comparison with ResNet-50 inspired Hyper-Residual Convolutional Neural Network model. Our findings reveal that an image resolution of 100x100x54 maximizes accuracy while maintaining computational efficiency, surpassing the performance of 150x150x54 and 50x50x54 resolution images. By employing data parallelism, we overcome system memory limitations and achieve exceptional classification results, with test accuracies and F1-scores reaching 0.96 and 0.97, respectively. This research highlights the potential of residual-based networks for analyzing hyperspectral images. It offers valuable insights into optimizing deep learning models in resource-constrained environments. The research presents detailed training pipelines for deep learning models that utilize large (> 4k) hyperspectral training samples, including background and without any data preprocessing. This approach enables the training of deep learning models directly on raw hyperspectral data.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Artificial Intelligence in Agriculture
Artificial Intelligence in Agriculture Engineering-Engineering (miscellaneous)
CiteScore
21.60
自引率
0.00%
发文量
18
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信