Effect of carburizing nitriding compound treatment on microstructure evolution and properties of low carbon gear steel

IF 4.3 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yuqi Dong, Xiufang Cui, Jian Li, Yuting Hu, Guo Jin, Qicheng Li, Jinna Liu, Pengju Fan
{"title":"Effect of carburizing nitriding compound treatment on microstructure evolution and properties of low carbon gear steel","authors":"Yuqi Dong,&nbsp;Xiufang Cui,&nbsp;Jian Li,&nbsp;Yuting Hu,&nbsp;Guo Jin,&nbsp;Qicheng Li,&nbsp;Jinna Liu,&nbsp;Pengju Fan","doi":"10.1016/j.matchemphys.2025.130489","DOIUrl":null,"url":null,"abstract":"<div><div>17CrNiMo6 steel is a low-carbon alloy exhibiting excellent comprehensive mechanical properties. It has often been employed as a vital component of machinery. In this study, a composite heat treatment technology based on vacuum carburizing and ion nitriding was developed. The effects of rare earth supersonic fine particle bombardment (SFPB) pretreatment on the microstructure and properties of the composite strengthening layer of 17CrNiMo6 steel after composite heat treatment were systematically studied. The results indicated that the surfaces of carbonitriding layers of vacuum carburizing + ion nitriding sample, supersonic fine particle bombardment + vacuum carburizing + ion nitriding sample, and supersonic fine particle bombardment + vacuum carburizing + rare earth lanthanum ion nitriding sample primarily comprised the ε-Fe<sub>2∼3</sub>N phase and γ ' -Fe<sub>4</sub>N phase. The surface hardness was nearly 940 HV<sub>1</sub>, and the thickness of the strengthening layer reached 1.71 mm, 1.85 mm, and 2.11 mm, respectively. Compared with the vacuum carburizing treatment, the composite heat treatment had a deeper strengthening layer while significantly enhancing the wear and corrosion resistance of the surface. Specifically, the carbonitride layer of the sample with supersonic fine particle bombardment + vacuum carburizing + rare earth lanthanum ion nitriding achieved the smallest friction coefficient, wear scar width, and wear weight loss (0.61, 824 μm, and 0.7 mg), and it exhibited −0.23V and 8.97 × 10<sup>−8</sup> A·cm<sup>−2</sup> minimum corrosion potential and current. Accordingly, supersonic fine particle bombardment + vacuum carburizing + rare earth lanthanum + ion nitriding sample exhibits optimal corrosion and wear resistance.</div></div>","PeriodicalId":18227,"journal":{"name":"Materials Chemistry and Physics","volume":"337 ","pages":"Article 130489"},"PeriodicalIF":4.3000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Chemistry and Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S025405842500135X","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

17CrNiMo6 steel is a low-carbon alloy exhibiting excellent comprehensive mechanical properties. It has often been employed as a vital component of machinery. In this study, a composite heat treatment technology based on vacuum carburizing and ion nitriding was developed. The effects of rare earth supersonic fine particle bombardment (SFPB) pretreatment on the microstructure and properties of the composite strengthening layer of 17CrNiMo6 steel after composite heat treatment were systematically studied. The results indicated that the surfaces of carbonitriding layers of vacuum carburizing + ion nitriding sample, supersonic fine particle bombardment + vacuum carburizing + ion nitriding sample, and supersonic fine particle bombardment + vacuum carburizing + rare earth lanthanum ion nitriding sample primarily comprised the ε-Fe2∼3N phase and γ ' -Fe4N phase. The surface hardness was nearly 940 HV1, and the thickness of the strengthening layer reached 1.71 mm, 1.85 mm, and 2.11 mm, respectively. Compared with the vacuum carburizing treatment, the composite heat treatment had a deeper strengthening layer while significantly enhancing the wear and corrosion resistance of the surface. Specifically, the carbonitride layer of the sample with supersonic fine particle bombardment + vacuum carburizing + rare earth lanthanum ion nitriding achieved the smallest friction coefficient, wear scar width, and wear weight loss (0.61, 824 μm, and 0.7 mg), and it exhibited −0.23V and 8.97 × 10−8 A·cm−2 minimum corrosion potential and current. Accordingly, supersonic fine particle bombardment + vacuum carburizing + rare earth lanthanum + ion nitriding sample exhibits optimal corrosion and wear resistance.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Chemistry and Physics
Materials Chemistry and Physics 工程技术-材料科学:综合
CiteScore
8.70
自引率
4.30%
发文量
1515
审稿时长
69 days
期刊介绍: Materials Chemistry and Physics is devoted to short communications, full-length research papers and feature articles on interrelationships among structure, properties, processing and performance of materials. The Editors welcome manuscripts on thin films, surface and interface science, materials degradation and reliability, metallurgy, semiconductors and optoelectronic materials, fine ceramics, magnetics, superconductors, specialty polymers, nano-materials and composite materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信