Fully discrete P02−P1 mixed elements for optimal control with parabolic equations and low regularity

IF 1.4 Q2 MATHEMATICS, APPLIED
Yuelong Tang, Yuchun Hua, Yujun Zheng, Chao Wu
{"title":"Fully discrete P02−P1 mixed elements for optimal control with parabolic equations and low regularity","authors":"Yuelong Tang,&nbsp;Yuchun Hua,&nbsp;Yujun Zheng,&nbsp;Chao Wu","doi":"10.1016/j.rinam.2025.100551","DOIUrl":null,"url":null,"abstract":"<div><div>This paper studies a novel fully discrete mixed method for optimal control problems (OCPs) with parabolic equations and low regularity. The backward difference scheme and <span><math><mrow><msubsup><mrow><mi>P</mi></mrow><mrow><mn>0</mn></mrow><mrow><mn>2</mn></mrow></msubsup><mo>−</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></math></span> mixed finite elements (MFEs) are used for temporal and spatial discretization of state and adjoint state, respectively. Error estimates of all variables are derived through the introduction of specific auxiliary variables and the application of suitable regularity assumptions. The theoretical analysis is validated by two numerical examples.</div></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"25 ","pages":"Article 100551"},"PeriodicalIF":1.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590037425000159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This paper studies a novel fully discrete mixed method for optimal control problems (OCPs) with parabolic equations and low regularity. The backward difference scheme and P02P1 mixed finite elements (MFEs) are used for temporal and spatial discretization of state and adjoint state, respectively. Error estimates of all variables are derived through the introduction of specific auxiliary variables and the application of suitable regularity assumptions. The theoretical analysis is validated by two numerical examples.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Applied Mathematics
Results in Applied Mathematics Mathematics-Applied Mathematics
CiteScore
3.20
自引率
10.00%
发文量
50
审稿时长
23 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信