{"title":"PINN based on multi-scale strategy for solving Navier–Stokes equation","authors":"Shirong Li , Shaoyong Lai","doi":"10.1016/j.rinam.2024.100526","DOIUrl":null,"url":null,"abstract":"<div><div>Neural networks combined with automatic differentiation technology provide a fundamental framework for the numerical solution of partial differential equations. This framework constitutes a loss function driven by both data and physical models, significantly enhancing generalization capabilities. Combining the framework and the idea of multi-scale methods in traditional numerical methods, such as domain decomposition and collocation self-adaption, we construct a method of the Physics-Informed Neural Networks (PINNs) based on multi-scale strategy to solve Navier–Stokes equations, and the results are more effective than XPINNs and SAPINNs. The computational efficiency of the proposed method is verified by solving two-dimensional and three-dimensional Navier–Stokes equations.</div></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"25 ","pages":"Article 100526"},"PeriodicalIF":1.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590037424000967","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Neural networks combined with automatic differentiation technology provide a fundamental framework for the numerical solution of partial differential equations. This framework constitutes a loss function driven by both data and physical models, significantly enhancing generalization capabilities. Combining the framework and the idea of multi-scale methods in traditional numerical methods, such as domain decomposition and collocation self-adaption, we construct a method of the Physics-Informed Neural Networks (PINNs) based on multi-scale strategy to solve Navier–Stokes equations, and the results are more effective than XPINNs and SAPINNs. The computational efficiency of the proposed method is verified by solving two-dimensional and three-dimensional Navier–Stokes equations.