{"title":"YAP activation in Müller cells alleviates oxidative stress in the rat retina after intravitreal injection with methylglyoxal","authors":"Toshihide Kashihara, Mayuko Yasaki, Yumi Okuyama, Aki Murayama, Akane Morita, Tsutomu Nakahara","doi":"10.1016/j.jphs.2025.02.005","DOIUrl":null,"url":null,"abstract":"<div><div>Methylglyoxal (MGO), a highly reactive dicarbonyl compound produced via the glycolytic pathway, plays a key role in the pathogenesis of various diabetic complications, such as diabetic retinopathy. Müller cells provide neurotrophic support and maintain retinal homeostasis, including the redox balance. This dysfunction leads to retinal disease. Yes-associated protein (YAP), a major downstream effector of the Hippo pathway, plays a crucial role in regulating cell survival. In this study, we investigated the roles of Müller cell YAP during MGO-induced retinal injury using normal rats intravitreally injected with MGO and a rat Müller cell line (rMC-1). Immunohistochemistry revealed that MGO injection increased the glial fibrillary acidic protein immunoreactivity in Müller cells. The alignment of Müller cell nuclei was disrupted in MGO-treated retinas. YAP increased and activated in Müller cells two days after MGO injection. This increase in YAP levels was independent of the Hippo pathway and partially attributed to the upregulation of <em>YAP</em> mRNA levels. YAP inhibition by verteporfin exacerbated MGO-induced cell damage and decreased Bcl-xL levels in rMC-1 cells. Intravitreal verteporfin injection also enhanced MGO-induced retinal oxidative stress. Overall, our findings suggest that YAP activation in Müller cells alleviates oxidative stress in the retina following MGO-induced retinal injury.</div></div>","PeriodicalId":16786,"journal":{"name":"Journal of pharmacological sciences","volume":"157 4","pages":"Pages 219-228"},"PeriodicalIF":3.0000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of pharmacological sciences","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1347861325000155","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Methylglyoxal (MGO), a highly reactive dicarbonyl compound produced via the glycolytic pathway, plays a key role in the pathogenesis of various diabetic complications, such as diabetic retinopathy. Müller cells provide neurotrophic support and maintain retinal homeostasis, including the redox balance. This dysfunction leads to retinal disease. Yes-associated protein (YAP), a major downstream effector of the Hippo pathway, plays a crucial role in regulating cell survival. In this study, we investigated the roles of Müller cell YAP during MGO-induced retinal injury using normal rats intravitreally injected with MGO and a rat Müller cell line (rMC-1). Immunohistochemistry revealed that MGO injection increased the glial fibrillary acidic protein immunoreactivity in Müller cells. The alignment of Müller cell nuclei was disrupted in MGO-treated retinas. YAP increased and activated in Müller cells two days after MGO injection. This increase in YAP levels was independent of the Hippo pathway and partially attributed to the upregulation of YAP mRNA levels. YAP inhibition by verteporfin exacerbated MGO-induced cell damage and decreased Bcl-xL levels in rMC-1 cells. Intravitreal verteporfin injection also enhanced MGO-induced retinal oxidative stress. Overall, our findings suggest that YAP activation in Müller cells alleviates oxidative stress in the retina following MGO-induced retinal injury.
期刊介绍:
Journal of Pharmacological Sciences (JPS) is an international open access journal intended for the advancement of pharmacological sciences in the world. The Journal welcomes submissions in all fields of experimental and clinical pharmacology, including neuroscience, and biochemical, cellular, and molecular pharmacology for publication as Reviews, Full Papers or Short Communications. Short Communications are short research article intended to provide novel and exciting pharmacological findings. Manuscripts concerning descriptive case reports, pharmacokinetic and pharmacodynamic studies without pharmacological mechanism and dose-response determinations are not acceptable and will be rejected without peer review. The ethnopharmacological studies are also out of the scope of this journal. Furthermore, JPS does not publish work on the actions of biological extracts unknown chemical composition.