Single-Enzyme Conversion of Tryptophan to Skatole and Cyanide Expands the Mechanistic Competence of Diiron Oxidases

IF 15.6 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Sanjoy Adak, Logan A. Calderone, August Krueger, Maria-Eirini Pandelia* and Bradley S. Moore*, 
{"title":"Single-Enzyme Conversion of Tryptophan to Skatole and Cyanide Expands the Mechanistic Competence of Diiron Oxidases","authors":"Sanjoy Adak,&nbsp;Logan A. Calderone,&nbsp;August Krueger,&nbsp;Maria-Eirini Pandelia* and Bradley S. Moore*,&nbsp;","doi":"10.1021/jacs.4c1457310.1021/jacs.4c14573","DOIUrl":null,"url":null,"abstract":"<p >Skatole is a pungent heterocyclic compound derived from the essential amino acid <span>l</span>-tryptophan by bacteria in the mammalian digestive tract. The four-step anaerobic conversion of tryptophan to skatole is well-established; though, to date, no aerobic counterpart has been reported. Herein, we report the discovery of the oxygen-dependent skatole synthase SktA that single-handedly converts 5-bromo-<span>l</span>-tryptophan to 5-bromoskatole, obviating the need for a multienzyme process. SktA is part of a three-gene biosynthetic gene cluster (BGC) in the cyanobacterium <i>Nostoc punctiforme</i> NIES-2108 and functions as a nonheme diiron enzyme belonging to the heme oxygenase-like domain-containing oxidase (HDO) superfamily. Our detailed biochemical analyses revealed cyanide and bicarbonate as biosynthetic coproducts, while stopped-flow experiments showed the hallmark formation of a substrate-triggered peroxo Fe<sub>2</sub>(III) intermediate. Overall, this work unravels an alternative pathway for converting tryptophan to skatole while also expanding the functional repertoire of HDO enzymes.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"147 8","pages":"6326–6331 6326–6331"},"PeriodicalIF":15.6000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/jacs.4c14573","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacs.4c14573","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Skatole is a pungent heterocyclic compound derived from the essential amino acid l-tryptophan by bacteria in the mammalian digestive tract. The four-step anaerobic conversion of tryptophan to skatole is well-established; though, to date, no aerobic counterpart has been reported. Herein, we report the discovery of the oxygen-dependent skatole synthase SktA that single-handedly converts 5-bromo-l-tryptophan to 5-bromoskatole, obviating the need for a multienzyme process. SktA is part of a three-gene biosynthetic gene cluster (BGC) in the cyanobacterium Nostoc punctiforme NIES-2108 and functions as a nonheme diiron enzyme belonging to the heme oxygenase-like domain-containing oxidase (HDO) superfamily. Our detailed biochemical analyses revealed cyanide and bicarbonate as biosynthetic coproducts, while stopped-flow experiments showed the hallmark formation of a substrate-triggered peroxo Fe2(III) intermediate. Overall, this work unravels an alternative pathway for converting tryptophan to skatole while also expanding the functional repertoire of HDO enzymes.

色氨酸单酶转化为臭鼬素和氰化物扩展了二铁氧化酶的机制能力
粪臭素是一种刺激性的杂环化合物,由哺乳动物消化道中的细菌从必需氨基酸l-色氨酸中提取。色氨酸厌氧转化为粪臭素的四步反应是公认的;不过,到目前为止,还没有有氧运动的相关报道。在此,我们报告了氧依赖性臭鼬醇合成酶SktA的发现,该酶可以单独将5-溴-l-色氨酸转化为5-溴臭鼬醇,从而避免了多酶过程的需要。SktA是蓝细菌Nostoc punctiformme NIES-2108中一个三基因生物合成基因簇(BGC)的一部分,作为一种非血红素二铁酶,属于血红素加氧酶样结构域氧化酶(HDO)超家族。我们详细的生化分析显示氰化物和碳酸氢盐是生物合成的副产物,而停流实验显示了底物触发过氧Fe2(III)中间体的标志性形成。总的来说,这项工作揭示了将色氨酸转化为臭鼬素的另一种途径,同时也扩展了HDO酶的功能库。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信