{"title":"A Review on Edge Large Language Models: Design, Execution, and Applications","authors":"Yue Zheng, Yuhao Chen, Bin Qian, Xiufang Shi, Yuanchao Shu, Jiming Chen","doi":"10.1145/3719664","DOIUrl":null,"url":null,"abstract":"Large language models (LLMs) have revolutionized natural language processing with their exceptional understanding, synthesizing, and reasoning capabilities. However, deploying LLMs on resource-constrained edge devices presents significant challenges due to computational limitations, memory constraints, and edge hardware heterogeneity. This survey provides a comprehensive overview of recent advancements in edge LLMs, covering the entire lifecycle — from resource-efficient model design and pre-deployment strategies to runtime inference optimizations. It also explores on-device applications across various domains. By synthesizing state-of-the-art techniques and identifying future research directions, this survey bridges the gap between the immense potential of LLMs and the constraints of edge computing.","PeriodicalId":50926,"journal":{"name":"ACM Computing Surveys","volume":"22 1","pages":""},"PeriodicalIF":23.8000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Computing Surveys","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3719664","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Large language models (LLMs) have revolutionized natural language processing with their exceptional understanding, synthesizing, and reasoning capabilities. However, deploying LLMs on resource-constrained edge devices presents significant challenges due to computational limitations, memory constraints, and edge hardware heterogeneity. This survey provides a comprehensive overview of recent advancements in edge LLMs, covering the entire lifecycle — from resource-efficient model design and pre-deployment strategies to runtime inference optimizations. It also explores on-device applications across various domains. By synthesizing state-of-the-art techniques and identifying future research directions, this survey bridges the gap between the immense potential of LLMs and the constraints of edge computing.
期刊介绍:
ACM Computing Surveys is an academic journal that focuses on publishing surveys and tutorials on various areas of computing research and practice. The journal aims to provide comprehensive and easily understandable articles that guide readers through the literature and help them understand topics outside their specialties. In terms of impact, CSUR has a high reputation with a 2022 Impact Factor of 16.6. It is ranked 3rd out of 111 journals in the field of Computer Science Theory & Methods.
ACM Computing Surveys is indexed and abstracted in various services, including AI2 Semantic Scholar, Baidu, Clarivate/ISI: JCR, CNKI, DeepDyve, DTU, EBSCO: EDS/HOST, and IET Inspec, among others.